SIGNAL PROCESSING SYMPOSIUM 2021

X

m

m

ABSTRACT BOOK

SPSympo-2021 21 - 23.09.2021 Lodz, Poland

· E'

SPSympo-2021

Abstract Book

September 21 – 23, 2021 Lodz, Poland

Editor:

Błażej Torzyk Lodz University of Technology, Stefana Żeromskiego 116, 90-924 Łódź Poland

e-mail: blazej.torzyk@p.lodz.pl

Author of the book cover photography:

Dr. Łukasz Januszkiewicz, Lodz University of Technology (Poland)

Acknowledgement:

SPSympo-2021 abstract book is partially formed basing on the template developed by Dr. Tomasz Pięciak, AGH UST, Krakow (Poland)

Welcome to SPSympo 2021

Dear Colleagues,

Welcome to the Signal Processing Symposium 2021.

SPSympo program consists of over 60 truly attention-grabbing papers and there are over 100 registered participants, even though this year's event is held online due to Covid-19.

The Signal Processing Symposium is a biannual international conference that brings together students, researchers and scientists representing a broad spectrum of computer science and radio-electronics disciplines, to present their latest findings and new trends shaping future research directions in science and technology. Since the first SPSympo in 2003, it has become well-established and an excellent forum for active participation in workshops, lectures, and scientific discussions in technical and evening sessions.

A main focus of SPSympo-2021 will be smart sensing systems that incorporate Information and Communications Technologies (ICT) for signal and image acquisition, transmission, processing and analysis in a broad range of applications covering remote sensing systems (radars, sonars, imaging, sensor networks), IoT, telemedicine, medical diagnosis, treatment and rehabilitation, robotics, human-system interaction, environment monitoring and space technologies.

We hope that this year's conference, despite of pandemic restrictions, will be another successful event that will enrich research in signal processing, expand its applications and strengthen international scientific ties.

Piotr Samczynski and Pawel Strumillo SPSympo-Chairs

Organizers

Lodz University of Technology Institute of Electronics

Η

Honorary Patronage of Polish Space Agency

SPSympo-2021 Co-Organiser Polish Academy of Science

PAN POLISH ACADEMY of SCIENCES

Financial Supporters

GOLD

Partners

Co-Sponsors IEEE

Media Partnership

<u>Special Issue "Smart Sensing Systems: Algorithms and Applications -</u> <u>Selected Papers from Signal Processing Symposium 2021"</u>

Special Issue "Recent Advances in Signal Processing and Radar for Remote Sensing"

Welcome to SPSympo 2021	3
Keynote speeches:	3
Connecting the dots – Radar in an interconnected world!	9
Bioinspired transforms in signal processing	0
Novel DL methods in SAR image processing	0
Indoor Scene analysis from Overhead Fisheye Cameras1	1
Electromagnetic Metamaterials and Metasurfaces: Design, Fabrication, and Applications	2
On enhancing data-driven structural health monitoring with explicit and implicit procedures	3
Advances in Multi-Variable, Non-Gaussian Stochastic Parametrization	4
Recent advances in 3D Radar Imaging of Non-Cooperative Target14	4
The Trust and Truth od Digitalisation in Maritime Domain: where are we?	5
On the Fringe:	6
Alienation – how does it manifest itself and how to prevent it?	6
Technical Programme Committee Members:18	B
Programme (Basic):	D
MONDAY 20.09.2021, Pre-Conference Tutorials	0
Phased Array Radar Adaptive Digital Beamforming	0
An overview of passive radar imaging techniques and results	1
Starting SP in 5G	2
TUESDAY 21.09.2021, Contents	3 3
WEDNESDAY 22.09.2021, Contents	9
Ambiguous free staring radar – new frontiers in MIMO for detection and communication	9
THURSDAY 23.09.2021, Contents	3
Plenary talks (Extended).	7
Session Image Processing and Recognition Tuesday 21 00 2021	7
Session Audio and video processing Tuesday 21.09.2021	n n
Session Telecommunication/Radar signal processing Tuesday 21.09.2021	2
Session Synthetic aperture radars and radar imagery Tuesday 21.09.2021	5
Session Signal and Image Processing for Medical Application I Wednesday 22.09.2021	9
Session Signal and Image Processing for Medical Application II Wednesday 22.09.2021	2
Session Geoscience and Remote Sensing Wednesday 22.09.2021	7
Session Radar Signal Processing Wednesday 22.09.2021	0
Session Signal Processing Components Thursday 23.09.2021	2
Session Localization and Tracking Thursday 23.09.2021	5
Session Radar systems and application Thursday 23.09.2021	7
Session Passive Radar Thursday 23.09.2021	9
Reviewers72	2
SPSympo-2023	5

Keynote opening talk

Connecting the dots - Radar in an interconnected world!

Prof. Daniel O'Hagan, Passive Radar and Anti-Jamming Techniques Department, Fraunhofer FHR (Germany)

Prof. Daniel W. O'Hagan is Head of the Passive Radar and Anti-Jamming Techniques Department, Fraunhofer FHR, Wachtberg, Germany. His department consists of four groups focused on Passive and Networked Radar, Electronic Defence, Advanced Concepts and System Development. He is former convener of the internationally renowned University of Cape Town (UCT) Radar Masters Course. Daniel is Chair and DEU National Representative of NATO **SET-268** "Bi-/Multi-static radar performance evaluation under synchronised conditions". Chair and DEU National Representative of NATO SET-296 on "Radar against

Hypersonic Threats" and former Chair of SET-207, and SET-164. He is the recipient of the NATO SET Early Career Award in 2019.

Daniel is Editor-in-Chief of the IEEE AESS Magazine and Associate Editor for radar with the same publication. Daniel holds a PhD in radar and has lectured at some of the leading R&D establishments throughout the world.

Keynote abstract:

A modern technology trend in the domain of sensing is towards interconnectivity. Multiple sensor nodes will have to communicate with each other – sometimes centrally coordinated, but increasingly on a decentralised basis. The sensor nodes themselves will not be uniform. Rather a sensor mosaic could comprise radars of different frequency and type, optical sensors and acoustic sensors.

This keynote presentation will consider this trend more generally and then provide some examples of backbone infrastructure that is required to achieve a cohesive sensor (particularly radar) network. This presentation will focus strongly on Multi Platform RF Systems (MPRFS) and how every sensor-node in a given constellation achieves a common understanding of time.

Keynote opening talk

Bioinspired transforms in signal processing

Prof. Piotr Augustyniak, AGH University of Science and Technology (Poland)

Piotr Augustyniak graduated in 1989 in electronic engineering from the Electrical Engineering Department AGH University of Science and Technology, Krakow. In years 2005-2012, he headed the Multidisciplinary School of Engineering in Biomedicine. For 11 years he has worked at Aspel SA, the Poland-biggest manufacturer of ECG equipment as a Research Engineer. Since 2018 prof. Augustyniak is Head of Department of Biocybernetics and Biomedical Engineering AGH. His scientific interests include hardware and software problems of biosignal processing. He published nine books on electrodiagnostic signal processing, over 240 journal and conference papers and was program committee member of numerous international conferences.

Novel DL methods in SAR image processing

Prof. Feng Xu, Fudan University (China)

Prof. Feng Xu received the B.E. with honor in Information Engineering from Southeast University, Nanjing, China and the Ph.D. with honor in Electronic Engineering from Fudan University, Shanghai, China, in 2003 and 2008, respectively. From 2008 to 2010, he was a postdoctoral fellow with the NOAA Center for Satellite Application and Research (STAR), Camp Springs, MD. From 2010 to 2013, he was with at Intelligent Automation Inc. Rockville MD, while partly working for NASA Goddard Space Flight Center, Greenbelt, MD as a research scientist. In 2012, he was selected into China's Global Experts Recruitment Program, and subsequently returned to Fudan University in June 2013, where he currently is a professor in the school of information science and technology and the vice director of the MoE Key Lab for Information Science of Electromagnetic Waves. He has published more than 60 papers in peer-reviewed journals and co-authored 3 books, among many conference papers. Among other honors, he was awarded the second-class National Nature Science Award of China in 2011. He was the

2014 recipient of the Early Career Award of IEEE Geoscience and Remote Sensing Society and the 2007 recipient of the SUMMA graduate fellowship in the advanced electromagnetics area. He currently serves as the associate editor for IEEE Geoscience and Remote Sensing Letters. He is the founding chair of IEEE GRSS Shanghai Chapter and member of IEEE GRSS AdCom. His research interests include electromagnetic scattering modeling, SAR information retrieval and radar system development.

Keynote speech Session 2 Audio and video processing

Indoor Scene analysis from Overhead Fisheye Cameras

Prof. Janusz Konrad, Boston University (USA)

Janusz Konrad received the Master's degree from Technical University of Szczecin, Poland in 1980 and the PhD degree from McGill University, Montréal, Canada in 1989. He joined INRS-Télécommunications, Montréal as a post-doctoral fellow and, since 1992, as a faculty member. Since 2000, he has been on faculty at Boston University, Boston, MA, USA. He is an IEEE Fellow and a Senior Editor of the IEEE Transactions on Image Processing. He has been actively involved in the IEEE Signal Processing Society as a Distinguished Lecturer and as Member-at-Large of the Conference Board. In the past, he served as an Area Editor of the EURASIP Signal Processing: Image Communications journal and Associate Editor of the IEEE Transactions on Image Processing, Communications Magazine, Signal Processing Letters and EURASIP Journal on Image and Video Processing. He is a co-recipient of the 2001 IEEE Signal Processing Magazine Award, the 2004-2005 EURASIP Image Communications Best Paper Award, the AVSS-2010 Best Paper Award and a co-winner of the 2010 ICPR Aerial View Activity Classification Challenge. He was the Technical Program Co-Chair of ICIP-2000 and AVSS-2010 as well as the

General Chair of AVSS-2013. His current research interests include video processing and computer vision, visual sensor networks, stereoscopic and 3-D imaging and displays, and human-computer interfaces.

Keynote speech Session 4 Telecommunication/Radar signal processing

Electromagnetic Metamaterials and Metasurfaces: Design, Fabrication, and Applications

Prof. Sławomir Hausman, Lodz University of Technology (Poland)

Sławomir Hausman received his M.Sc. (with honors) degree in electronics in 1982 from Lodz University of Technology (Poland) and Ph.D. degree from University of Strathclyde, Glasgow, UK in 1990. He obtained his habilitation (dr hab. degree) from Lodz University of Technology in 2009 where he is currently an Associate Professor. His research and more than 50 publications in peer-revied journals focus on radio propagation modelling, wireless body area networks, optimization of microwave systems, cellular 5G systems. electromagnetic compatibility, computational electromagnetics, digital signal processing, and recently metamaterials. He was a leader and/or team member in more than twenty R&D projects for industry. He also had several years of experience as small company owner, designer, power (including specialist in industry electric utilities. telecommunication operators, Polish Office of Electronic

Communications). He was employed at Lodz Electric Power Utility as telecommunication network senior specialist (1994–1997). He is a Chairman of Polish National Committee of International Union of Radio Science URSI – Scientific Commission K: Electromagnetics in Biology and Medicine, Chair of Lodz Branch of Polish Society of Theoretical and Applied Electrical Engineering. He chaired technical program committees of three premier national radio communications and ICT conferences and is a TPC member of numerous international and national conferences and seminars. He has over 15 years of experience at various academic administrative positions, as Dean of the Faculty of Electrical, Electronic, Computer and Control Engineering and Head of the Telecommunication Division. Professor Hausman prepared and runs 13 academic courses (lectures) both in Polish and English (for International Faculty of Engineering) in the area of measurement systems, signal processing, and telecommunication systems. He also delivers lectures for MSE and PhD programmes at Pavia University, Italy.

Keynote speech Session 5 Signal Processing Components

On enhancing data-driven structural health monitoring with explicit and implicit procedures

Dr. David García Cava, University of Edinburgh, (Scotland)

Dr. David García Cava has received his degree in Mechanical Engineering from the Technical University of Madrid, M.Sc in Advanced Structural Engineering from Edinburgh Napier University and his Ph.D in Mechanical Engineering from The University of Strathclyde, Glasgow in 2006, 2012 and 2016 respectively. He is currently a Chancellor Fellow in the School of Engineering at the University of Edinburgh, Scotland. From 2006 until 2010, before his PhD studies, David worked in the industry for 4 years as Structural Engineer where he put in practice his knowledge in engineering applications. From 2016 until 2017 he was a Teaching Associate

and from 2017 until 2019 a Lecturer in the Department of Mechanical and Aerospace Engineering in the University of Strathclyde before he joined the University of Edinburgh. David's research interest varies from structural health monitoring, structural dynamics, structural system identification, virtual sensing, condition monitoring, data-driven & hybrid methods for condition assessment. David is leading a research group that blends his research expertise towards developing methodologies for reducing maintenance cost and extending the useful life of new and/or existing structures by adding value with intelligent algorithms for supporting decision-making. He has published numerous articles in scientific journals and on peer-reviewed conferences. David has been awarded with the prestigious John Moyes Lessells Travel Scholarship by The Royal Society of Edinburgh, and the Flatman grant by the Institution of Mechanical Engineers. David is a Charted Engineer by the Institution of Mechanical Engineers, where he is member since 2014 and an active member of the Edinburgh and South & East Scotland committee. He is also a Fellow of The Higher Education Academy, United Kingdom since 2018. He has co-organized a Mini-Symposia on Vibration-based Structural Health Monitoring: Data Analysis and Time Series Methods within the framework of the International Conference on Engineering Vibration2017 (ICoEV 2017), Bulgaria. He has been Associate Technical Program Chairs in Measurement for Renewable Energy Systems in the International Instrumentation & Measurement Technology Conference (I2MTC) 2021, Scotland and is also part of the technical advisory panel of the International Conference on Health Monitoring of Civil & Maritime Structures (HEAMES). David is a Topic Editor in Sensors MDPI Journal and member of the scientific board of Mechanics and Mechanical Engineering Journal.

Keynote speech Session 6 Geoscience and Remote Sensing

Advances in Multi-Variable, Non-Gaussian Stochastic Parametrization

Prof. Patrick Dewilde, Honorable Professor, Wroclaw University of Science and Technology (Poland)

Patrick Dewilde (EE `66 KULeuven, Belgian Lic. Math. `68 and PhD `70 Stanford University) has been a professor in electrical engineering at the Technical University of Delft for 31 years, director of the Delft Institute for Micro-electronics DIMES for ten years, chairman of the Technology Foundation STW (a major Dutch research funding agency) for eight years and di-rector of the Institute of Advanced Study of the TU Munich for five years. His research, pub-lished in the international scientific literature and some books, has focused on mathematical issues related to the design, control and operations of dynamical systems in general and in particular circuits and systems for signal processing. He is an IEEE Fellow since 1981, an elected member of the Dutch Royal Academy of Arts and Science, has been elevated to the rank of Knight of the Dutch Lion and is presently a honorary professor both at the Technische Universität München and the Technical University of Wroclaw.

Keynote speech Session 7 Localization and Tracking

Recent advances in 3D Radar Imaging of Non-Cooperative Target

Prof. Marco Martorella, University of Pisa (Italy)

Marco Martorella received his Laurea degree (Bachelor+Masters) in Telecommunication Engineering in 1999 (cum laude) and his PhD in Remote Sensing in 2003, both at the University of Pisa. He is now an Associate Professor at the Department of Information Engineering of the University of Pisa and an external Professor at the University of Cape Town where he lectures within the Masters in Radar and Electronic Defence. Prof. Martorella is also Director of the CNIT's National Radar and Surveillance Systems Laboratory. He is author of more than 200 international journal and conference papers, 3 books and 17 book chapters. He has presented several tutorials at international radar conferences, has lectured at NATO Lecture Series and organised international journal special issues on radar imaging topics. He is a member of the IEEE AES Radar Systems Panel, a member of the NATO SET Panel, where he sits as co-chair of the Radio Frequency Technology Focus Group, and a member of the EDA Radar Captech. He has chaired several NATO research activities, including three

Research Task Groups, one Exploratory Team and two Specialist Meetings. He has been recipient of the 2008 Italy-Australia Award for young researchers, the 2010 Best Reviewer for the IEEE GRSL, the IEEE 2013 Fred Nathanson Memorial Radar Award, the 2016 Outstanding Information Research Foundation Book publication award for the book Radar Imaging for Maritime Observation and the 2017 NATO Set Panel Excellence Award. He is a co-founder of ECHOES, a radar systems-related spin-off company. His research interests are mainly in the field of radar, with specific focus on radar imaging, multichannel radar and space situational awareness. He is a Fellow of the IEEE.

Keynote speech Session 9 Radar systems and application

The Trust and Truth od Digitalisation in Maritime Domain: where are we?

Dr. Michele Fiorini, The Institution of Engineering and Technology in London (United Kingdom)

Educated at Ancona (Italy), Bath (United Kingdom) and Gdańsk (Poland) Universities, **Michele Fiorini** holds a Ph.D. in electronic and telecommunications engineering in Italy and an M.B.A. in strategy, programme and project management in Poland. He is a principal engineer and engineering manager for Leonardo s.p.a. in Rome (Italy) and industrial member of the e-navigation committee at the International Association of marine aids to navigation and Lighthouse Authorities (IALA) in Paris (France). He is an active volunteer at the Institution of Engineering and Technology (IET) in London (UK), where he served on different boards and committees including Council (2003-06 and 2015-18) and Qualification Board (2006-09) where he was the first non-UK member elected ever.

Dr Fiorini has been consortium leader for the realisation of the "Zautomatyzowanego Systemu Radarowego Nadzoru (ZSRN)

polskich obszarów morskich / Automatic National System of Radar Control for Maritime Areas of Poland" realized by Selex – Sistemi Integrati (now Leonardo s.p.a.) in consortium with local partners. In June 2018 he was invited to provide special lecture and advices at Mokpo National Maritime University (MMU), Republic of Korea on how to solve navigational risk based on vulnerability of maritime accidents for e-Navigation. Michele Fiorini has been appointed Expert Evaluator for the Baltic Sea research programme BONUS, science for a better future of the Baltic Sea region, funded EUR 100 million for the years 2011-'17 and was session chair at the 2013 Euro-Asia Economic Forum in Xi'an, China.

Dr Fiorini is a serving member of the Advisory Board of the MBA Programme -AMBA accredited- at the Gdańsk University of Technology in Poland and has been the Chair of the Institution of Engineering and Technology (IET) Council 2017-2018 in London, UK. He is on judging panel of the E&T Trust and Truth Award 2021.

On the Fringe:

Alienation - how does it manifest itself and how to prevent it?

Dorota Myko, Faculty of Electronics and Information Technologies, Warsaw University of Technology (Poland)

Dorota Myko graduated from Warsaw University, Paris-Nord University XIII and Warsaw School of Economics (SGH). Since 2005 she has been working at Warsaw University of Technology at the Faculty of Electronics and Information Technologies in the Department of Promotion and Information.

We would like to invite all the participants of the symposium to join the presentation on the theme of alienation. Alienation and isolation express a similar state or feeling of loneliness. A person feels isolated from others for various reasons, such as bad relationships, loss of love, impairment and so on. Criminals are isolated from the society and detained in prison for punishment. Isolation is also a method of treatment and a preventive measure to limit the person's negative influence on others.

The word alienation comes from the Latin word alienus - alien, which is the opposite of the word native. The concept of alienation was first used by the German philosopher Georg Hegel (at the turn of the 19th century) and then widely described by Karl Marx in his writings on work and the worker. However, the phenomenon of alienation itself was noticed even by Plato and has since found a significant place in culture and literature.

There are different types of alienation: social, cultural, emotional, parental, religious, economic, and technological... Alienation is also the subject of research by neurobiologists in the context of the areas in the brain responsible for the so-called "social brain". In the brain, we have neural networks that serve to establish social contacts, and hormones, oxytocin and vasopressin, facilitate this process. The proper or improper functioning of this whole system may determine whether a child will or will not develop autism.

A sense of alienation can be very depressing and frustrating when an individual feels unaccepted and lacks the sense of belonging to the place or society in which they live. In many countries a number of communities or minorities feel alienated due to repression or government policies. It has been observed that participation in various social movements may be a way of combating the alienation of discriminated groups or a way for individuals to gain solidarity within the group. When we intend to deal with a sense of alienation, we often oscillate between self-confidence in achieving of goals and conformism in decisions making.

American sociologist, David Riesman, in the 1950s, spoke extensively about alienation in his most famous work, The Lonely Crowd. In his book he describes the passage of the American society from an internal-control personality type to an external-control type and a special role of a tradition-driven society. However, the problem from a psychological point of view was taken up by Dr Elaine Aron in the book: Highly Sensitive. A highly sensitive person, will absorb moods from people around them and thus risk feeling distanced, uncomprehended and finally alienated from the environment. Researchers have special tests to see if we are affected by this problem or not.

How can we deal with alienation and still be in harmony with ourselves? Should the solution be to take the courage to become a person disliked by part of people, that means be authentic and controversial, to conduct self-therapy and to focus on spiritual development? Or maybe it would be enough to develop a healing and creative personality and follow in the footsteps of Howard S. Friedman or Josif Brodski? Or maybe we should read the essays by philosopher, sociologist, psychologist and psychoanalyst Erich Fromm? And what if it finally turns out that we can gain power from a diet, trees or mysterious oriental herbs and potions of St. Hildegard from Bingen?... The speaker will try to answer these and other questions in her speech.

Symposium Chair:

Prof. Paweł Strumiłło, Lodz University of Technology (Poland) **Prof. Piotr Samczyński,** Warsaw University of Technology (Poland)

TPC Chairs:

Prof. Andrzej Materka, Lodz University of Technology (Poland) **Prof. Jacek Misiurewicz**, Warsaw University of Technology (Poland)

Publications Chairs:

Dr. Artur Klepaczko, Lodz University of Technology (Poland) **Prof. Konrad Jędrzejewski**, Warsaw University of Technology (Poland)

Organizing Committee Chair:

Ms. Aleksandra Sibińska, Lodz University of Technology (Poland) **Ms. Marta Malik**, Warsaw University of Technology (Poland)

Organizing Committee:

Ms. Anna Borowska-Terka, Lodz University of Technology (Poland)
Ms. Anna Janisz, Lodz University of Technology (Poland)
Dr. Paweł Poryzała, Lodz University of Technology (Poland)
Mr. Błażej Torzyk, Lodz University of Technology (Poland)

Symposium Coordinator:

Mr. Marcin Żywek, Warsaw University of Technology (Poland)

Honorary Chair:

Prof. Krzysztof Kulpa, Warsaw University of Technology (Poland)

Industry Councellor:

Dr. Andrzej Sieradz, PIT-RADWAR (Poland)


```
Technical Programme Committee Members:
```

Dr. Yuliya Averyanova, National Aviation University (Ukraine) Prof. Chris Baker. University of Birmingham (UK) Prof. Alessio Balleri, Cranfield University (United Kingdom) Prof. William Barrot, Embry-Riddle Aeronautical University (USA) Mr. Marcin Baczyk, Warsaw University of Technology (Poland) Prof. Fabrizio Berizzi, University of Pisa (Italy) Dr. Tadeusz Brenner, PIT-RADWAR S.A. (Poland) Dr. Amerigo Capria, CNIT-RaSS Lab (Italy) Dr. Simona Caraiman, Technical University of Iasi (Romania) Prof. Alberto Carini, University of Trieste (Italy) Prof. Aleksandr Cariow, West Pomeranian University of Technology Szczecin (Poland) **Prof. Mikhail Cherniakov**, University of Birmingham (UK) Prof. Fabiola Colone, Sapienza University of Rome (Italy) Mr. Zbigniew Czekała, PIT-RADWAR S.A. (Poland) Prof. Adam Dabrowski, Poznan University of Technology (Poland) Dr. Andreas Deistung, University Hospital Halle (Saale) (Germany) Prof. Marek Domański, Poznan University of Technology (Poland) Dr. Krzysztof Duda, AGH University of Science and Technology (Poland) Prof. Alfonso Farina, Selex-ES (Italy) Prof. Gaspare Galati, Tor Vergata University (Italy) Dr. Jakub Galka, AGH University of Science and Technology (Poland) Prof. Fulvio Gini, University of Pisa (Italy) Dr. Elisa Giusti, CNIT (Italy) Dr. levgen Gorovyi, It-Jim (Ukraine) Prof. Maria Sabrina Greco, University of Pisa (Italy) Prof. Pamela Guevara, University of Concepción (Chile) Dr. Braham Himed, US Air Force Research Laboratory (USA) Prof. Konrad Jędrzejewski, Warsaw University of Technology (Poland) Prof. Hristo Kabakchiev, Sofia University "St. Kliment Ohridski" (Bulgaria) Prof. Piotr Kaniewski, Military University of Technology (Poland) Prof. Adam Kawalec, Military University of Technology (Poland) Prof. Jan Kelner, Military University of Technology (Poland) Prof. Peter Knott, Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR(Germany) Prof. Krzysztof Kulpa, Warsaw University of Technology (Poland) Dr. Mikolaj Leszczuk, AGH University of Science and Technology (Poland) Dr. Lorenzo Lo Monte, Telephonics (USA) Dr. Tom Lukowski, (Canada) Prof. Mateusz Malanowski, Warsaw University of Technology (Poland) Prof. Paulo Margues, ISEL – Instituto de Telecomunicacoes de Lisboa (Portugal) Prof. Marco Martorella, University of Pisa (Italy) Prof. Andrzej Materka, Lodz University of Technology (Poland) Prof. Bogdan Matuszewski, University of Central Lancashire (United Kingdom) Prof. Maciej Niedźwiecki, Gdansk University of Technology (Poland) Prof. Katarzyna Osińska-Skotak, Warsaw University of Technology (Poland) Prof. Mateusz Pasternak, Military University of Technology (Poland) Prof. Jerzy Pietrasiński, Military University of Technology (Poland) Dr. Tomasz Pięciak, AGH University of Science and Technology (Poland) Prof. Jarabo Maria Pilar, University of Alcalá (Spain) Prof. Anton Popov, Igor Sikorsky Kyiv Polytechnic Institute (Ukraine)

Technical Programme Committee Members:

Prof. Jürgen R Reichenbach, Jena University Hospital (Germany) Dr. Marek Wojciech Rupniewski, Warsaw University of Technology (Poland) Dr. Sinitsyn Rustem, National Aviation University (Ukraine) Prof. Bartłomiej Salski, Warsaw University of Technology (Poland) Prof. Piotr Samczyński, Warsaw University of Technology (Poland) Dr. Andrzej Skalski, AGH University of Science and Technology (Poland) Prof. Paweł Strumiłło, Lodz University of Technology (Poland) Prof. Michał Strzelecki, Lodz University of Technology (Poland) Prof. Janusz Szczepański, Polish Academy of Sciences (Poland) Dr. Bogusław Szlachetko, Wroclaw University of Science and Technology (Poland) Dr. Magdalena Szymczyk, AGH University of Science and Technology (Poland) **Prof. Ewa Świercz**, Białystok University of Technology (Poland) Prof. Miroslaw Świercz, Bialystok University of Technology (Poland) Dr. Matthias Weiß, Fraunhofer FHR (Germany) Prof. Felix Yanovsky, National Aviation University (Ukraine) Prof. Yimin Daniel Zhang, Temple University (USA) Prof. Tomasz Zieliński, AGH University of Science and Technology (Poland)

TIME (UTC)MONDAY 20.09.2021, Pre-Conference Tutorials08:45 - 09:00Testing and linking time...09:00 - 10:45Tutorial 1:Title:Phased Array Radar Adaptive Digital Beamforming
Prof. Antonio de Maio, University "Federico II" of Napoli (Italy)

Room: A

Antonio De Maio received the Dr.Eng. (Hons.) and Ph.D. degrees in information engineering from the University of Naples Federico II, Naples, Italy, in 1998 and 2002, respectively. From October to December 2004, he was a Visiting Researcher with the U.S. Air Force Research Laboratory, Rome, NY, USA. From November to December 2007, he was a Visiting Researcher with the Chinese University of Hong Kong, Hong Kong. He is currently a Professor with the University of Naples Federico II. His research interest lies in the field of statistical signal processing, with emphasis on radar signal processing, waveform

diversity, cognitive radar, optimization theory applied to radar signal processing, and electronic defense. He is the recipient of the 2010 IEEE Fred Nathanson Memorial Award as the young (less than 40 years of age) AESS Radar Engineer 2010 whose performance is particularly noteworthy as evidenced by contributions to the radar art over a period of several years, with the following citation for "robust CFAR detection, knowledge-based radar signal processing, and waveform design and diversity". He is the corecipient of the 2013 best paper award (entitled to B. Carlton) of the IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS with the contribution "Knowledge-Aided (Potentially Cognitive) Transmit Signal and Receive Filter Design in Signal-Dependent Clutter". Dr. De Maio is a Fellow of IEEE, a Distinguished Lecturer for the IEEE AES (biennium 2020-2021), and a co-author (with A. Farina and S. Haykin) of the book "The Impact of Cognition on Radar Technology", Scitech Publishing, Radar, Sonar & Navigation, 2017.

TIME (UTC)

MONDAY 20.09.2021, Pre-Conference Tutorials

Tutorial 2:

Target Detection and Imaging with Multi-static Passive Radar

Dr. Hui Ma, Xidian University (China)

11:00 – 12:45

Title:

Room: A

Hui Ma received the B.Sc. degree in electronic and information engineering and the Ph.D. degree in electromagnetics and microwave technology from Beihang University, Beijing, China, in 2009 and 2015, respectively. From 2012 to 2014, she was a visiting Ph.D. student with the University of Birmingham, Birmingham, U.K., where she continued as a Research Fellow from 2015 to 2017, under the grants funded by the European Space Agency. She is currently an associate Professor with the National Laboratory of Radar Signal Processing, Xidian University, Xi'an, China. Her research interests include multistatic radar, passive radar, electromagnetic vortex radar, realaperture radar imaging, and signal processing. She has more than 30 publications in peer reviewed international journals and conferences.

01:00 - 02:45

Title:

An overview of passive radar imaging techniques and results

Dr. Diego Cristallini, Fraunhofer Institute for High Frequency Physics and

Tutorial 3:

Room: A

Radar Techniques FHR (Germany) Dr. Diego Cristallini was born in graduated cum laude in Telecomm May 2006 from the University of received April 2010 Dr. Cristallini Received April 2

Dr. Diego Cristallini was born in Terni, Italy, in 1981. He graduated cum laude in Telecommunication Engineering in May 2006 from the University of Rome "La Sapienza". In received April 2010 Dr. Cristallini received the Ph.D. degree in Radar Remote Sensing also from the University of Rome "La Sapienza" with a thesis entitled "Innovative adaptive techniques for multi-channel spaceborne SAR systems". From December 2009 to February 2015 he has been with the Array-based Radar Imaging Department of the Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR in Wachtberg, Germany. During this time, he has been working on the development of innovative space-time adaptive

techniques for clutter suppression in multi-channel airborne radar systems, with special attention to bistatic systems and to highly non-homogeneous clutter environments. Since March 2015, he is leading the Team on Passive Covert Radar in the Passive Radar and Anti-Jamming Techniques Department of Fraunhofer FHR, Germany. From March to June 2020, he has been visiting scientist at Defence Science and Technology (DST) Group in Edinburgh, South Australia. Cristallini is co-chair of the NATO-SET 242 group on "PCL on moving platforms" and he has been lecturing for the NATO LS-243 "Passive Radar Technology". Dr. Cristallini received the Best Paper Award at EUSAR 2014, co-authored the Best Poster Award at EUSAR 2018, and he was co-recipient of the 2018 Premium Award for Best Paper in IET Radar, Sonar and Navigation.

TIME (UTC)

MONDAY 20.09.2021, Pre-Conference Tutorials

03:00 - 04:45	Tutorial 4:
Title:	Starting SP in 5G
Room: A Pi Da Ui ye bii au Fr Pr "D eo Di	Prof. Tomasz Zieliński, <i>AGH University of Science and Technology in Krakow (Poland)</i> Professor Tomasz Zieliński , a former worker of the Instrumentation and Measurement Department and a present worker of the Telecommunications Department of the AGH Iniversity of Science and Technology in Krakow, Poland, is specializing for almost 40 ears in frequency and time-frequency signal analysis, especially in telecommunication, iomedical and power engineering applications. He is recognizable in Poland as an uthor (a scientific story-teller) of a few books, mainly student textbooks: "Time- frequency and Time-Scale Signal Analysis" (1996), "From Theory to Digital Signal Processing" (2003), "Digital Signal Processing. From Theory to Applications" (2005) and DSP in Telecommunications. Principles. Multimedia. Transmission" (2014 – a main ditor and an individual author of three chapters). In 2021 he authored the book "Starting bigital Signal Processing in Telecommunication Engineering. A Laboratory-based

	llun
Signal	
Processing	Symposium 🏸

TIME (UTC)

08:45 - 09:00

09:00 - 09:30

09:30 – 10:45 (all talks)

Room: A

TUESDAY 21.09.2021, Contents

Testing and linking time ...

ROOM A: SPSympo 2021 OPENING

Keynote opening talks

Connecting the dots – Radar in an interconnected world!

Prof. Daniel O'Hagan, Passive Radar and Anti-Jamming Techniques Department, Fraunhofer FHR (Germany)

Prof. Daniel W. O'Hagan is Head of the Radar and Anti-Jamming Passive Techniques Department, Fraunhofer FHR, Wachtberg, Germany. His department consists of four groups focused on Passive and Networked Radar, Electronic Defence, Advanced Concepts and System Development. He is former convener of the internationally renowned University of Cape Town (UCT) Radar Masters Course. Daniel is Chair and DEU National Representative NATO **SET-268** of

"Bi-/Multi-static radar performance evaluation under synchronised conditions", Chair and DEU National Representative of NATO SET-296 on "Radar against Hypersonic Threats" and former Chair of SET-207, and SET-164. He is the recipient of the NATO SET Early Career Award in 2019.

Bioinspired transforms in signal processing

Prof. Piotr Augustyniak, AGH University of Science and Technology (Poland)

Piotr Augustyniak graduated in 1989 in electronic engineering from the Electrical Engineering Department AGH University of Science and Technology, Krakow. In years 2005-2012, he headed the Multidisciplinary School of Engineering in Biomedicine. For 11 years he has worked at Aspel SA, the Poland-biggest manufacturer of ECG equipment as a Research Engineer. Since 2018 prof. Augustyniak is Head of Department of Biocybernetics and **Biomedical** Engineering AGH. His scientific interests include hardware and software problems of biosignal processing. He published nine books on electrodiagnostic signal processing, over 240 journal and conference papers and was program committee member of numerous international conferences.

TIME (UTC)

09:30 – 10:45 (all talks)

Room: A

TUESDAY 21.09.2021, Contents

Keynote opening talk

Novel DL methods in SAR image processing

Prof. Feng Xu, Fudan University (China)

Prof. Feng Xu received the B.E. with honor in Information Engineering from Southeast University, Nanjing, China and the Ph.D. with honor in Electronic Engineering from Fudan University, Shanghai, China, in 2003 and 2008, respectively. From 2008 to 2010, he was a postdoctoral fellow with the NOAA Center for Satellite Application and Research (STAR), Camp Springs, MD. From 2010 to 2013, he was with at Intelligent Automation Inc. Rockville MD, while partly working for NASA Goddard Space Flight Center, Greenbelt, MD as a research scientist. In 2012, he was selected into China's Global Experts Recruitment Program, and subsequently returned to Fudan University in June 2013, where he currently is a professor in the school of information science and technology and the vice director of the MoE Key Lab for

Information Science of Electromagnetic Waves. He has published more than 60 papers in peer-reviewed journals and co-authored 3 books, among many conference papers. Among other honors, he was awarded the second-class National Nature Science Award of China in 2011. He was the 2014 recipient of the Early Career Award of IEEE Geoscience and Remote Sensing Society and the 2007 recipient of the SUMMA graduate fellowship in the advanced electromagnetics area. He currently serves as the associate editor for IEEE Geoscience and Remote Sensing Letters. He is the founding chair of IEEE GRSS Shanghai Chapter and member of IEEE GRSS AdCom. His research interests include electromagnetic scattering modeling, SAR information retrieval and radar system development.

10:45 - 11:00

Coffee break

Signal		à
Processing \$	Symposium 🍃	ק

Session	S1 Image Processing and Recognition <u>Chair: Dr. Artur Klepaczko &</u> <u>Prof. Fong Yu</u>	S4 Telecommunication/Radar signal processing Chair: Prof. Fabrizio Berizzi & Prof. Koprad. Jodrzajawski	
	PIOI. FENG XU	PIOI. KOIITAU JĘUIZEJEWSKI	
11:00 – 11:20 <u>Speech 1:</u> (Room: A)	Room: A Human Detection and Action	Room: B Electromagnetic Metamaterials and Metasurfaces: Design Eabrication and	
	Deder Deint Clevel Incerting Technology	Applications	
11:00 – 11:40 <u>Keynote talk:</u> (Room: B)	jiayu wu	Applications Prof. Sławomir Hausman	
11:20 – 11:40	Room: A	Room: B	
<u>Speech 2:</u> (Room: A)	Sparse Neural Networks With Topologies Inspired by Butterfly Structures	Power and Energy Efficiency Optimization of Baseband Transmission Links	
11:40 – 12:00 <u>Speech 1:</u> (Room: B)	Dariusz Puchala	Christoph Lange	
11:40 – 12:00 <u>Speech 3:</u> (Room: A)	Room: A Composition of Similarity Metrics for Correspondence Matching in Depth	Room: B Traffic Modelling for Mobile Ad-hoc	
	Estimation	Networks Simulation	
12:00 – 12:20 <u>Speech 2:</u> (Room: B)	Hubert Żabiński	Piotr Gajewski	
12:00 - 12:20	Room: A	Room: B	
<u>Speech 4:</u> (Room: A)	Human Sleep Posture Recognition Based On Millimeter-Wave Radar	Multitaper Time-Frequency Reassigned Spectrogram in Micro-Doppler Radar Signal	
40.00 40.40		Analysis	
12:20 – 12:40 <u>Speech 3:</u> (Room: B)	Tao Zhou	Karol Abratkiewicz	

TUESDAY 21.09.2021, Contents

	11.
Signal	
Processing S	symposium 🏸

S4 Telecommunication/Radar Session S1 Image Processing and Recognition signal processing Chair: Prof. Fabrizio Berizzi & Chair: Dr. Artur Klepaczko & Prof. Feng Xu Prof. Konrad Jędrzejewski 12:20 - 12:40 Room: B Speech 5: Room: A (Room: A) Target HRRP Reconstruction Based on Wavelet transform applied to coffee entomology Waveform Delay Dictionary with Phase-12:40 - 01:00 coded Pulse in Anechoic Chamber Speech 4: (Room: B) Everton Silva Fonseca Xiaobin Liu 12:40 - 01:00Room: A Room: B Speech 6: (Room: A) Fast Selection of INTRA CTU Partitioning PA Distortions on Radar Signals for in HEVC Encoders using Artificial Neural Spectral Coexistence 01:00 - 01:20Networks Speech 5: Everton Silva Fonseca (Room: B) Vincenzo Carotenuto 01:20 - 02:00Dinner break 02:00 - 03:00**ROOM A: Industrial Session 1 Business Partner** Session S2 Audio and video processing S3 Synthetic aperture radars and radar Chair: Prof Janusz Kondrad & Chair: Prof. Paulo Margues & Prof. Piotr M. Szczypiński Prof. Jerzy Pietrasiński 03:00 - 03:40Room: A Room: B Keynote talk (Room: A) Indoor Scene analysis from Overhead Experimental Results of SAR Imaging Using aLow-Cost X-band Radar with a PLL Fisheye Cameras with DirectModulation for UAV Applications 03:00 - 03:20Prof. Janusz Konrad Damian Gromek Speech 1: (Room: B) 03:40 - 04:00 Room: A Room: B Speech 1: (Room: A) Modeling multipath propagation of A Novel Criterion for Array Geometry acoustic signal in a swimming pool Optimization 03:20 - 03:40Jacek Misiurewicz Meysam Eskandari Speech 2: (Room: B)

TUESDAY 21.09.2021, Contents

Signal		4
Processing	Symposium	y

TUESDAY 21.09.2021, Contents

TIME (UTC)

Programme (Basic):

Session S2 Audio and video processing S3 Synthetic aperture radars and radar Chair: Prof Janusz Kondrad & Chair:Prof. Paulo Marques & Prof. Piotr m. Szczypiński Prof. Jerzy Pietrasiński 04:00 - 04:20Room: A Room: B Speech 2: (Room: A) Localization of an Acoustic Emission Non-coherent change detection in real SAR Source Based on Time Difference of satellite imagery with usage of the CFAR algorithms Arrival 03:40 - 04:00Artur Gromek Mariia Khyzhniak Speech 3: (Room: B) 04:20 - 04:40Room: A Room: B Speech 3: (Room: A) Analysis of error in sound sources High-Resolution SAR Imaging with Orthogonal Sub-Band Frequency Diverse position estimation with microphone arravs Arrav 04:00 - 04:20Manuel Rosa Zurera Mengdi Zhang Speech 4: (Room: B) 04:40 - 05:00 Room: A Room: B Speech 4: (Room: A) Motion-Based Multiple Object Detection ISAR IMAGING PHASE CORRECTION and Tracking in Video Stream ALGORITHM BASED ON ENTROPY MINIMIZATION Piotr Sadura 04:20 - 04:40Andon Lazarov Speech 5: (Room: B) 05:00 - 05:20 Room: A Room: B Speech 5: (Room: A) Analysis of mouth click sounds used in Polarimetric Calibration of Mini SAR based echolocation on UAV Platform 04:40 - 05:00Michał Bujacz Jiaxuan Liu Speech 6: (Room: B) 05:00 - 05:20Room: B Speech 7: (Room: B) Effects of SAR Resolution in Automatic Building Segmentation Using CNN Sandhi Wangiyana,

27

	AA
Signal	
Processing S	Symposium 🏸

TIME (UTC)

TUESDAY 21.09.2021, Contents

05:20 - 05:40	Coffee break
06:00 - 08:00	Online-integration: wonder.me

TIME (UTC)

08:45 - 09:00

09:00 - 10:45

Tutorial

Room: A

Ambiguous free staring radar – new frontiers in MIMO for detection and communication

WEDNESDAY 22.09.2021. Contents

Testing and linking time ...

Prof. Krzysztof S. Kulpa, Warsaw University of Technology (Poland)

Prof. Krzysztof S. Kulpa received his M. Sc., Ph.D. and Dr Sc. degrees from the Department of Electronic Engineering, Warsaw University of Technology (WUT) in 1982, 1987 and 2009 respectively. In 2014 he obtained the title of State Professor, granted by the President of Poland. Since 1990 - Professor at the Institute of Electronic Systems (WUT). In the years 1995-2014 - head of the Digital Signal Processing Laboratory, and since 2008 - the head of the Radar Technology Research Group at WUT. Since 2011 he has held the position of Scientific Director of the Defense and Security Research Center of the Warsaw University of Technology. He is a Chairman of Microwave and Radar Chapter of the Committee of Electronics and Telecommunication, Polish Academy of Science,

member of IEEE (SM) member of IEEE AES Radar Panel, EUMA and AOC. He is very active worldwide, presenting lectures, seminars and invited talks – being the Distinguish Lecturer of IEEE. Technical Program Committees member of several major international conferences in the field of radar, such as the International Radar Symposium IRS, European Synthetic Aperture Radar Conference EUSAR (since 2002), European Radar Conference EURAD, RADARxx, Fusion, Chairman of many SPSympo, MIKON, and IRS conferences. Presently he is an associate editor for the International Journal of Microwave and Wireless Technologies, the International Journal of Electronics and Telecommunications, and Telecommunications and IEEE Transactions on Aerospace and Electronic Systems. His area of interest is Radar Signal Processing including SAR, ISAR, PCL and EW technologies. In his professional life he has always combined the management of objectives, team and partner cooperation, leadership, teaching, and theoretical research and applications.

10:45 - 11:00

Coffee break

	Am-
Signal	È À
Processing S	Symposium 🏸

TIME (UTC)

WENESDAY 22.09.2021, Contents

Session	S10 Signal and Image Processing for Medical Application I Chair: Prof Anton Popov &	S6 Geoscience and Remote Sensing Chair: Prof. Hanna Rothkaehl &
	Prof. Piotr Augustyniak	Prof. Krzysztof Kulpa
11:00 – 11:20 <u>Speech: 1</u> (Room: A)	Room: A Distance Metrics for Classification of	Room: B Advances in Multi-Variable, Non-Gaussian
11:00 – 11:40 <u>Keynote talk</u> (Room: В)	Piotr Augustyniak [®]	Prof. Patrick Dewilde
11:20 – 11:40 <u>Speech: 2</u> (Room: A) 11:40 – 12:00 Speech: 1	Room: A Mutual Information Analysis of Brain- Heart Interactions in Epileptic Children	Room: B Detection of periodic disturbances in LOFAR calibration solutions
(Room: B)	Ivan Kotiuchyi 💿	Kalaizyna Duuzinska
11:40 – 12:00 <u>Speech: 3</u> (Room: A)	Room: A Hand measurement based on integrated vision system- Leap Motion	Room: B Algorithm for Creating Propagation Attenuation Maps Based on Parabolic
12:00 – 12:20 <u>Speech: 2</u> (Room: B)	Martyna Samowicz 💿	Equation Method Michał Kryk 🗅
12:00 – 12:20 <u>Speech: 4</u> (Room: A)	Room: A A Study on Selection of HRV-based Features for Different Classifiers in Atrial	Room: B Ionospheric scintillation diagnostic on LOFAR ILT network in single station mode
12:20 – 12:40 <u>Speech: 3</u> (Room: B)	Fibrilation Detection Szymon Buś	Mariusz Pozoga
12:20 – 12:40 <u>Speech: 5</u> (Room: A)	Room: A Motivating wearable device for pleaic	Room: B Polarimetric-radar drop size evaluation for
12:40 – 01:00 <u>Speech: 4</u>	hand rehabilitation	wind speed estimate based on Weber criterion
(Room: B)	Ilona Dominik 💿	Yuliya Averyanova

	ll
Signal	
Processing \$	Symposium 🏸

TIME (UTC)

WENESDAY 22.09.2021, Contents

Session	S10 Signal and Image Processing for	S6 Geoscience and Remote Sensing
	Medical Application I	
	Chair: Prof Anton Popov &	Chair: Prof. Hanna Rothkaehl &
	Prot. Piotr Augustyniak	Prot. Krzysztot Kulpa
40.40 04.00	D A	De euro D
12:40 - 01:00	Room: A	Room: B
Speech: 6		Determining ionopharic drift and
(ROOM: A)	THE 50 NETWORK ON A DEMOTE	opiostropy of irregularities from LOEAP
01.00 - 01.20	CLIIDE FOR THE BLIND PERSONS	
01.00 - 01.20 Speech: 5	GOIDE FOR THE BEIND FERSONS	core measurements
(Room: B)	Robert Kawecki	Marcin Grzesiak
		Marolin Cr200lak
01.20 - 02.00	Dinn	er break
01.20 02.00		or broan
02:00 - 03:00	Room A: Industrial Session 2	Room B: IEEE Signal Processing Society
	Business Partner	Chapter Poland meeting
	Dusiness i di titei	
Session	S11 Signal and Image Processing for	S12 Geoscience and Remote Sensing
	Medical Application II	
	<u>Chair: Prof. Tomasz Pięciak &</u>	<u>Chair: Dr. Michele Fiorini &</u>
	<u>Dr. Paweł Badura</u>	<u>Dr. Łukasz Maślikowski</u>
02.00 02.20	Deems A	Deem: D
03:00 - 03:20	Room: A	Room: B
Speech 1:	Experimental studies on the efficiency of	A Modeling Problem of a Continuous Time
<u></u>	people authentication using EEG data	Domain Signal by its Discrete Counterpart
	from the same and different	5 7 1
	examinations	
	Renata Plucińska	Boguslaw Szlachetko 🕑
03.20 - 03.40	Room: A	Room: B
05.20 - 05.40		
Speech 2:	Improved Wireless Capsule Endoscope	TRISH — a Triggerless Random
	Localization with Phase Detection	Interleaved Sampling Hardware
	Algorithm	
	Paweł Oleksy	Marek Wojciech Rupniewski 💿
03:40 - 04:00		
	Room: A	Room: B
Speech 3:		
	Detection of Dyslexia Using Eye Tracking	Mitigating of received signal power loss
		caused by multipath effect in phased array
		radars
	Davia Nama'l	Josef Combrach 6
	Boris Nerusil	Jacek Gambrych

	11.
Signal	
Processing S	Symposium 🏸

Session	S11 Signal and Image Processing for	S12 Geoscience and Remote Sensing
	Medical Application II	Obain Du Mishala Fianiai A
	<u>Chair: Prof. Tomasz Pięciak &</u>	<u>Chair: Dr. Michele Fiorini &</u>
	Dr. Paweł Badura	<u>Dr. Łukasz Masiikowski</u>
04:00 - 04:20	Room: A	Room: B
Speech 4:	Analysis of Brain Reaction to Emotional Faces	Ground Clutter Analises in Noise Radar using Unmatched Filter Concept
	Bohdan Vodianyk 🖻	Maślikowski Łukasz 🖻
04:20 - 04:40	Room: A	Room: B
<u>Speech 5:</u>	Cross-domain human motion recognition	Calibration of Transmitting and Receiving Array of a Radar using MIMO Measurement
	Xianghan Yang	Maślikowski Łukasz 🖻
04:40 - 05:00		Room: B
Speech 6:		A Hybrid Algorithm for Radar Cross Section Calculation of Electrically Large Targets
		Zhuo Liu

TIME (UTC)

WENESDAY 22.09.2021, Contents

	lu
Signal	
Processing S	ymposium 🏸

TIME (UTC)	THURSDAY 23.09.2021, Contents	
08:45 – 09:00	Testing and linking time	
09:00 – 10:45	Feature engineering in signal analysis	
<u>Tutorial</u>	Prof. Anton Popov, National Technical University of Ukraine "Igor Sikorsky Kyjv Polytechnic Institute" (Ukraine)	
	since 2001. Anton Popov authored 150 conference proceedings and supervised is students. His research interests include applications and interpretation of biomedical signals a methods for epileptic seizure managem cardiorythmograms, techniques for quanti recognition of imaginary movements, musc as other biosignals and medical images f human physical conditions.	Anton Popov is an Associate professor of Electronic Engineering Department of Igor Sykorsky Kyiv Polytechnic Institute (Ukraine), He is a lecturer for the courses "Theory of signals", "Biomedical Electronic Systems", "Machine Learning and signal processing in biomedical systems". He also hods a position of Al/Deep Learning Technical Lead in Ciklum (UK). Anton is an IEEE Senior Member and a member of IEEE Engineering in Medicine and Biology Society publications in peer-reviewed journals and more than 60 bachelors, masters, and PhD of signal processing methods to the analysis and images. Currently, his group works on ent based on electroencephalograms and fication of cognitive workload and emotions, be synergies detection, stabilography, as well or diagnosis of diseases and evaluating the
10:45 – 11:00	Coffee break	
Session	<i>S5 Signal Processing Components <u>Chair: Prof. Mario Greco &</u> <u>Dr. Garcia Cava David</u></i>	S9 Radar systems and application <u>Chair: Prof. Gaspare Galati &</u> <u>Prof. Jacek Misiurewicz</u>
11:00 – 11:40	Room: A	Room: B
<u>Keynote talk:</u>	On enhancing data-driven structural health monitoring with explicit and implicit procedures	The Trust and Truth od Digitalisation in Maritime Domain: where are we?
	Dr. David García Cava	Dr. Michele Fiorini

Signal		
Processing Symposium		

THURSDAY 23.09.2021, Contents

TIME (UTC)

Programme (Basic):

Session	<i>S5 Signal Processing Components</i> <u>Chair: Prof. Mario Greco &</u> <u>Dr. Garcia Cava David</u>	S9 Radar systems and application <u>Chair: Prof. Gaspare Galati &</u> <u>Prof. Jacek Misiurewicz</u>
11:40 – 12:00	Room: A	Room: B
Speech 1:	Resource Allocation in Correlated and Non-Correlated MIMO Systems	Estimation of Rotational Speed of Helicopter Rotor Through Horizontal Synchrosqueezing
	Stefan Klobe	Karol Abratkiewicz 💿
12:00 – 12:20	Room: A	Room: B
<u>Speech 2:</u>	Comparison of slip-compensated odometry for tracked, four- and six-wheel vehicles Łukasz Chlebowicz	Four-Channel Ground-Based C-Band FMCW Radar Demonstrator Jakub Kamil Julczyk
12:20 – 12:40	Room: A	Room: B
Speech 3:	Human Behavior Recognition Based on Multi-Dimensional Feature Learning of Millimeter-Wave Radar	Analysis of Spectrum Signatures from Rotating Blades of Small Drone
	Xiangfeng Wang	Ekaterina Plotnitskaya
12:40 - 01:00	Room: A	
Speech 4:	Evaluation of EMD and SSA sensitivity for efficient detection of aerodynamic instabilities in centrifugal compressors	
	Mateusz Stajuda	

Signal	Mm	
Processing Symposium		

TIME (UTC)

THURSDAY 23.09.2021, Contents

01:00 - 02:00	Dinner break	
		Room B: On the Fringe
		Alienation – how does it manifest itself and how to prevent it?
		Dorota Myko, Warsaw University of Technology (Poland)
02:00 - 03:00	Room A: Industrial Session 3	
	Digital Innovation Hub 5G	
	Prof. Sławomir Hausman	
Session	S7 Localization and Tracking <u>Chair: Dr. Rupniewski Marek &</u> <u>Prof. Marco Martorella</u>	S8 Passive Radar <u>Chair: Dr. Mateusz Malanowski & Prof.</u> <u>Gomez-del-Hoyo, Pedro-Jose</u>
03:00 – 03:40 <u>Keynote talk</u> (Room: A)	Room: A Recent advances in 3D Radar Imaging of Non-Cooperative Target	Room: B 2D Ground Target Location Using GPS based Passive Radar
03:00 – 03:20 <u>Speech 1:</u> (Room: B)	Prof. Marco Martorella	Pedro-Jose Gomez-del-Hoyo
03:40 – 04:00 <u>Speech 1:</u> (Room: A)	Room: A 3D Localization for Multiplatform Radar Networks with Deployable Nodes	Room: B Preliminary detection results obtained with experimental airborne passive radar
03:20 – 03:40 <u>Speech 2:</u> (Room: B)	Angela Marino	Rafał Rytel-Andrianik 🗅
Signal		2
--------------	-------------	---
Processing S	Symposium 🍃	フ

Programme (Basic):

Session	S7 Localization and Tracking <u>Chair: Dr. Rupniewski Marek &</u> <u>Prof. Marco Martorella</u>	S8 Passive Radar <u>Chair: Dr. Mateusz Malanowski & Prof.</u> <u>Gomez-del-Hoyo, Pedro-Jose</u>
04:00 - 04:20 <u>Speech 2:</u> (Room: A) 03:40 - 04:00 <u>Speech 3:</u> (Room: B)	Room: A Adaptive Anchor Pairs Selection in a TDOA-based System Through Robot Localization Error Minimization Marcin Kolakowski 🕞	Room: B Field Trials of Passive Radiolocation using LOFAR Radio Telescope and External Reference Receiver Konrad Jędrzejewski 🕞
04:20 – 04:40 <u>Speech 3:</u> (Room: A)	Room: A Measurement Error Correlation in Processing of Overlapping Blocks in	Room: B Performance Optimization for Passive Bistatic Radar Based on Detection Range
04:00 – 04:20 <u>Speech 4:</u> (Room: B)	FMCW Radar Krzysztof Stasiak	Predictions Marcin Żywek 💿
04:40 – 05:00 <u>Speech 4:</u> (Room: A)	Room: A Overlaping-based Radio Signal Processing for SDF Location Method	Room: B Signal conditioning for DAB-illuminated passive radar
04:20 – 04:40 <u>Speech 5:</u> (Room: B)	Rafał Szczepanik D	Gustaw Mazurek 6
05:30 - 06:00	<mark>SPSymp</mark> SPSym	o CLOSING po-Chairs

THURSDAY 23.09.2021, Contents

Plenary talks (Extended):

	Session Image Processing and I	Recognition Tuesday 21.09.2021
	<u>Chair: Dr. Artur Klep</u>	aczko & Prof. Feng Xu
TIME (UTC)	On each 4	
11:00 – 11:20	Speech 1:	environmental adaptability. As the degree of
Title:	Human Detection and Action Classification Based on	integration of millimeter-wave radar increases, it is widely used in the field of autonomous driving. To
Room: A	Millimeter Wave Radar Point Cloud Imaging Technology	data relevance millimeter-wave radar, this paper
	<u>jiayu wu</u> 1, zhanyu zhu², Haipeng wang¹	on the 77GHZ millimeter wave MIMO radar AWR1443 verification system. We propose a point cloud filtering method based on the millimeter wave radar point cloud. Furthermore, the point cloud data set from four gestures of traffic police is created and
Organization(s):	¹ Fudan University (China), ² Suzhou University (China)	sent to classification neural network Point GNN. The four gestures, including stopping, turning right, turning left and holding can be recognized by point
Session:	Image Processing and Recognition	cloud classification. The recognition accuracy rate is up to 83%.
11:20 – 11:40	Speech 2:	In this paper we propose sparse neural networks with topologies inspired by fast computational butterfly
Title:	Sparse Neural Networks With	structures of selected linear transforms, namely: fast discrete cosine transform, and Beneus network like
Room: A	Butterfly Structures	topologies. It should be emphasized that sparse neural networks allow to obtain high reduction in the
	<u>Dariusz Puchala</u> [®] , Kamil Stokfiszewski [®]	number of arithmetic operations and weights needed by neural structures while preserving good efficiency in selected tasks where dense neural networks find their applications. In order to verify the efficiency of the considered structures we conducted a series of experiments in data compression and image
Organization(s):	Lodz University of Technology (Poland)	recognition. The obtained experimental results confirm good efficiency of the considered sparse neural structures and reveal that such topologies allow for significant reduction in the number of
Session:	Image Processing and Recognition	required arithmetic operations and weights that must be trained and stored in order to re-use trained neural networks.

Session Image Processing and Recognition Tuesday 21.09.2021

Chair: Dr. Artur Klepaczko & Prof. Feng Xu

TIME (UTC)		
11:40 – 12:00	Speech 3:	Correspondence matching is a prerequisite step in dense depth estimation techniques. In this paper we
Title:	Composition of Similarity Metrics for Correspondence	consider various similarity metrics for correspondence matching and we present an approach which can be used to optimize it, which is
Room: A	Matching in Depth Estimation	based on statistical analysis of the training dataset. Experimental results show that by careful selection of
	Olgierd Stankiewicz	similarity metric can have positive impact on depth estimation quality and that the differences between
Organization(s):	Poznan University of Technology (Poland)	various metrics range up to 60 percent points of bad- pixel depth map quality ratio. It has also been shown that usage of proposed composite similarity can lead
Session:	Image Processing and Recognition	to improved depth map quality, expressed as lower bad-pixel ratio.
12:00 – 12:20	Speech 4:	In this paper, we propose a robust human sleep posture recognition method via multidimensional
Title:	Human Sleep Posture	feature representation and learning based on
	Recognition Based On	millimeter-wave (mmw) radar. Firstly, through time-
Room: A	Millimeter-Wave Radar	reflected by the human body, the range spectrum.
Room: A	Millimeter-Wave Radar Tao Zhou, Zhaoyang Xia, Xiangfeng Wang, Feng Xu	trequency processing of the radar echo signal reflected by the human body, the range spectrum, Doppler spectrum, range-Doppler spectrum, horizontal angle spectrum and vertical angle spectrum of the estimated target are obtained. By setting a fixed frame window time length and splicing the above feature spectrums, 5 single-channel 2D radar features are obtained, and combining them in
Room: A	Millimeter-Wave Radar <u>Tao Zhou,</u> Zhaoyang Xia, Xiangfeng Wang, Feng Xu <i>Fudan University (China)</i>	trequency processing of the radar echo signal reflected by the human body, the range spectrum, Doppler spectrum, range-Doppler spectrum, horizontal angle spectrum and vertical angle spectrum of the estimated target are obtained. By setting a fixed frame window time length and splicing the above feature spectrums, 5 single-channel 2D radar features are obtained, and combining them in parallel can get a variety of different multi-channel 2D radar feature representations. Finally, a lightweight multi-channel convolutional neural network (CNN) with Inception-Residual module (IRM) is designed to learn and classify multidimensional features. Extensive experiments were carried out using the developed system, and a large amount of data was obtained to train and test the classifier. The results

Session Image Processing and Recognition Tuesday 21.09.2021

Chair: Dr. Artur Klepaczko & Prof. Feng Xu

TIME (UTC)		
12:20 – 12:40	Speech 5:	In this work, the studies, the design and the develop ment of a computational algorithm to assist in the
Title:	Wavelet transform applied to coffee entomology	management of insect pests in coffee plantations are documented, particularly detecting the presence of cicadas in the middle of the plantations. Acoustic
Room: A	João Paulo Lemos Escola ^{1,3} , Rodrigo Capobianco Guido ² , Ivan Nunes da Silva ¹ , <u>Everton Silva Fonseca</u> ³	signals captured previously are submitted to the system, which reads the raw data, converts them to the wavelet domain and groups them based on the Bark Scale. Then, Paraconsistent Characteristics Analysis, appearing as a technique recently presented in the scientific literature and which had not yet been used for this purpose, serves as a basis for selecting the best filter banks so that they can be later delivered to a Support Vector
Organization(s):	¹ Universidade de São Paulo (Brazil), ² Universidade Estadual Paulista (Brazil), ³ Instituto Federal de São Paulo (Brazil) Image Processing and	Machine, responsible for the final phase of signal identification. The accuracy of 100% was achieved in most of the 3600 tests performed, proving the viability of the implemented strategy, which has become minimally complex due to the optimization provided by the paraconsistent methodology. Finally, a prototype in the scope of Internet of Things is described to serve as a possibility of implantation in the field.
Session:	Recognition	
12:40 – 13:00 Title:	Speech 6: Fast Selection of INTRA CTU	The paper deals with reduction of the computational complexity of the widely employed HEVC video encoders in the intra-frame mode. The work is
Room: B	Artitioning in HEVC Encoders using Artificial Neural Networks Mateusz Lorkiewicz ¹ , Olgierd Stankiewicz ¹ , Marek Domański ¹ , Hsueh-Ming Hang ² , Wen-Hsiao Peng ²	partition of each coding three unit (CTU). The idea is to use a pre-trained neural network that mimics the decisions of the classic encoder control algorithms developed in the MPEG reference software. In the first part of the paper, an attempt for straightforward approach is considered where CTUs are classified according to their content into classes corresponding to the partitions of CTUs. It is demonstrated why such an approach cannot be successful. In the second part
Organization(s):	Poznan University of Technology (Poland)	of the paper, context-based training of a neural network is considered. The context consists of a number of the previously encoded CTUs. First of all,
Session:	Geoscience and Remote Sensing	the problem of the choice of the context is considered. Then, the results obtained with HEVC intra-frame coding are provided for the selections of the CTU partitions made by the pre-trained neural network.

	Session Audio and video pro	cessing Tuesday 21.09.2021
TIME (UTC) 03:00 – 03:40		Keynote talk
Title:	Indoor Scene Analysis from Overhead Fisheye Cameras	
Room: A		
03:40 - 04:00	Speech 1:	The paper deals with a problem of severe multipath
Title:	Modeling multipath	swimming pool. The problem appeared during a study of a system for pool safety enablement. The
Room: A	Jacek Misiurewicz ¹ , Konrad Bruliński ² , Wiesław Klembowski ³ , Krzysztof Kulpa ¹	study of a system for poor safety enancement. The system idea is to detect pre-drowning symptoms with a wearable device given to all pool users, and to signal an emergency situation with ultrasonic message. Finally, the system should locate the alarm signal source in the pool. A swimming pool acoustic environment differs from the sea environment by presence of large flat reflecting planes and by a small size of the water cube. Then, the reflections are numerous and very strong, heavily influencing the
Organization(s): Session:	¹ Warsaw University of Technology (Poland), ² Lemontech s.c. (Poland), ³ Berserg sp. z o.o. (Poland) Audio and video processing	localization process. The paper presents an attempt to create a model of the swimming pool response, suitable for simulation experiments with detection and localization of emergency signal. The model is verified with live hydroacoustic recordings from real pools. Then, a study of possible remedies for the localization system, applied on the trasmit side (waveform design) and on the receive side (receiver
		placement and signal processing) is presented.
04:00 – 04:20 Title: Room: A	Speech 2: Localization of an Acoustic Emission Source Based on Time Difference of Arrival Mariia Khyzhniak, Mateusz Malanowski	The paper presents results of localization of an acoustic emission source in the two-dimensional space based on signals acquired using microphones and the TDoA (Time Difference of Arrival) technique. The delay between signals in the channels is measured using their cross-correlation. Then the location is obtained using multilateration. The Firefly Algorithm and Gradient Descent Algorithm are used
Organization(s):	Warsaw University of Technology (Poland)	for the purpose of estimating the location.
Session:	Audio and video processing	

Session Audio and video processing Tuesday 21.09.2021

Chair: Prof. Janusz Konrad & Prof. Piotr M. Szczypiński

TIME (UTC)	On a such o	
04:20 - 04:40	Speech 3:	position estimation with two microphone arrays. The
Title:	Analysis of error in sound sources position estimation with microphone arrays	position is determined as the intersection of two lines which pass through the centres of the arrays with slopes equal to the angle of arrival. Due to errors in
Room: A Organization(s): Session:	Manuel Rosa Zurera [®] , Manuel Utrilla-Manso [®] , Roberto Gil-Pita [®] , Joaquín Garcia-Gomez [®] <i>University of Alcalá (Spain)</i> Audio and video processing	the direction of arrival estimation, the estimated position of the sound source could be erroneous. An analytical method is presented to study the vector norm of positioning error, which is complemented with a methodology based on Monte-Carlo simulations. This methodology has been applied to a system of two arrays, resulting that the area where position is estimated accurately is small, suggesting the usage of networks of arrays for the surveillance of wide areas.
04:40 – 05:00 Title: Room: A Organization(s): Session:	Speech 4: Motion-Based Multiple Object Detection and Tracking in Video Stream <u>Piotr Sadura</u> Warsaw University of Technology (Poland) Audio and video processing	Detecting and tracking objects is recently very important problem in computer vision field. It is widely used in areas like surveillance, security, automated vehicle systems and many more. This application is capable of detecting and tracking multiple objects in video sequences captured by a static camera.
05:00 - 05:20	Speech 5:	The aim of the thesis was to determine and compare
Title: Room: A	Analysis of mouth click sounds used in echolocation	basic signal properties of mouth clicks made for the purpose of echolocation. It was possible thanks to the involvement of 30 sighted volunteers, who prepared mouth clicks' recordings according to the received
Organization(s): Session:	Magdalena Bogus, <u>Michał Bujacz</u> Lodz University of Technology (Poland) Audio and video processing	instructions. The volunteers recorded three types of clicks – loudest, highest and lowest repeating each 10 times. All samples were automatically analysed using a program written in Python, that calculated the main frequency and relative amplitude for each sound. The gathered data were used to prepare statistics. The majority of frequencies from all mouth clicks were obtained in the range of 0.5-2kHz, with lowest amplitudes for lower frequency clicks. These results were consistent with expectations, however, they were obtained with quite a high standard deviation.

Plenary talks (Extended):

Ses	sion Telecommunication/Radar	signal processing Tuesday 21.09.2021
	<u>Chair: Prof. Fabrizio Berizzi</u>	& Prof. Konrad Jędrzejewski
TIME (UTC)		Keynote talk
11:00 – 11:40		<u>noynoto taik</u>
Title:	Electromagnetic Metamateri	als and Metasurfaces: Design, Fabrication, and Applications
Room: B	Pr	of. Sławomir Hausman
11:40 – 12:00	Speech 1:	Power and energy consumption of communication networks contribute to the resource demand and
Title:	Power and Energy Efficiency	hence the sustainability of society. Transmission links form important basic parts of communication
Room: B	Transmission Links	networks and thus they add to the overall
Organization(s):	<u>Christoph Lange</u> ¹ , Andreas Ahrens ² ¹ Hochschule für Technik und Wirtschaft Berlin, University of Applied Sciences (Germany), ² Hochschule Wiemer University	communication networks' resource demand. Therefore it is important to optimize transmission links in order to support the energy-efficient design of communication networks. In transmission systems the constellation size in general is a degree of freedom when designing a transmission link. In this contribution, baseband transmission via additive white Gaussian noise (AWGN) channels and copper cables is optimized with respect to minimum power usage and energy demand, respectively for the practically relevant case of fixed throughput and given transmission guality of a link. The results are
Session:	Telecommunication/Radar signal processing	two-fold: In the AWGN case the minimum power and energy is used at the smallest possible constellation sizes. In contrast, in the practical case of band-limited baseband transmission over twisted-pair copper wires the optimum constellation size increases as the band limitation becomes stronger, i.,e., as the cable gets longer at constant bit rate or the bit rate is increased at constant link length.
12:00 – 12:20	Speech 2:	This paper is devoted to modelling of
Title:	Traffic Modelling for Mobile	telecommunication traffic, generated by nodes in mobile ad hoc networks (MANET). according to
Room- B	Ad-hoc Networks Simulation	different categories in MANET topology. Each
Organization(s):	Piotr Gajewski [®] , Jerzy Lopatka [®] , Piotr Lubkowski [®] <i>Military University of</i>	profile, described by intensity of use of specific services. The overall traffic generated by the node is a combination of traffics related to specific services, and their statistical parameters are coming from real exercises.
	Technology (Poland)	
Session:	Telecommunication/Radar signal processing	

Session Telecommunication/Radar signal processing Tuesday 21.09.2021

Chair: Prof. Fabrizio Berizzi & Prof. Konrad Jędrzejewski

TIME (UTC)		
12:20 – 12:40	Speech 3:	This paper presents the concept of using the multitaper time-frequency (TF) reassigned
Title:	Multitaper Time-Frequency Reassigned Spectrogram in Micro-Doppler Radar Signal	spectrogram in the context of micro-Doppler signal analysis used in radar applications. Firstly, the theoretical background essential for understanding
Room: B	Analysis	further analysis and implementation of the
	Karol Abratkiewicz [®] , Piotr Samczyński®	considered method is presented. Next, the simulation results highlighting the advantages of multitaper reassignment in the context of applying it in micro- Doppler analyses are illustrated. Finally, real data collected by the compact short-range radar system is
Organization(s):	Warsaw University of Technology (Poland)	processed. The obtained results show significant improvement in the separability of components on the TF plane. Thanks to using the multitaper technique, only the most contributing components
Session:	Telecommunication/Radar signal processing	target movement parameters can be further distinguished thanks to the possibility of both the concentration of energy on the plane and averaging noise.
12:40 - 01:00	Speech 4:	Pulse radar signal is utilized in anechoic chamber for
Title:	Target HRRP Reconstruction	transmitting and receiving (ITR). However, the target
Room: B	Based on Waveform Delay Dictionary with Phase-coded Pulse in Anechoic Chamber Xiaobin Liu.	pulse. Then, the precise target high resolution range profile (HRRP) is difficult to be obtained. As the distance range between the target and antenna can be known previously, the waveform delay dictionary
	Feng Zhao, Qihua Wu, Xiaofeng Ai	is proposed in this paper to construct the transform matrix of compressive sensing (CS). Then, the target HRRP can be reconstructed by solving the
Organization(s):	National University of Defense Technology (China)	optimization problem. Simulations are conducted and the results indicate that the proposed waveform delay dictionary shows good HRRP reconstruction performance in anechoic chamber for the target
Session:	Telecommunication/Radar signal processing	measurement.

Session Telecommunication/Radar signal processing Tuesday 21.09.2021

Chair: Prof. Fabrizio Berizzi & Prof. Konrad Jędrzejewski

TIME (UTC)		
01:00 - 01:20	Speech 5:	This paper deals with the effects of Power Amplifiers (PAs) on radar waveforms designed to ensure
Title:	PA Distortions on Radar Signals for Spectral Coexistence	spectral compatibility with other Radio Frequency (RF) wireless systems cohabitating in the same frequency band. To this end, a specific hardware-in- the-loop test-bed composed of a Personal Computer
Room: B	<u>Vincenzo Carotenuto</u> ¹ , Augusto Aubry ¹ , Antonio De Maio ¹ , Alessio Izzo ¹ , Alfonso Farina ² , Rosario Schiano Lo Moriello ¹	(PC), an Arbitrary Waveform Generator (AWG), a nonlinear PA, and a Signal Analyser (SA) is designed. It allows to gather measurements of the amplified signal and to grasp unwanted modifications of its spectral features due to the PA nonlinear distortion. Besides, it permits a quantitative assessment of the discrepancies between the nominal and the actual interference power injected by the radar in the shared frequency bandwidths. To
Organization(s):	¹ University of Naples Federico II (Italy), ² Technical consultant	alleviate the spectral distortions induced by the PA and improve spectral coexistence, the use of a Digital Pre-Distortion (DPD) stage upstream the PA is investigated. Modeling techniques together with parameters inference are discussed and applied to the measured waveforms. The obtained experimental results highlight that pairing a suitable
Session:	Telecommunication/Radar signal processing	waveform design strategy with a DPD processing represents a viable means to mitigate the PA distortions and to realize spectral coexistence.

	Sessior	Synthetic aperture radars and	radar imagery	Tuesday 21.09.2021
		Chair: Prof Paulo Marque	es & Prof. Jerzy Pietras	<u>iński</u>
тіме	(UTC)			
	(0.0)	Speech 1:	This paper presents	the system design, imaging
03:00	- 03:20		algorithm, and first	trial results of an X-band
Titlo		Experimental Results of SAR	frequency modulated	d continuous wave (FMCVV)
mie.		hand Radar with a PLL with	waveform synthesiz	ed by a PLL with direct
Roon	n: B	DirectModulation for UAV	modulation. The ins	stant growth of autonomous
		Applications	vehicle technology	puts a demand on sensors,
		Demise One and	precision, and afforda	bility. The latest navigation and
		<u>Damian Gromeк,</u> Piotr Samczynski	appreciated in unm	anned aerial vehicle (UAV)
		Krzysztof Stasiak,	applications. In partic	cular, low cost, small size, and
		Jakub Julczyk,	high precision of remo	ote sensors find a wide range of
		Maciej Wielgo,	applications in civilia	an and military domains (e.g.,
		Karol Abratklewicz	systems. self-driving	a cars. military surveillance
			missiles, or fire guida	ance, among others). The SAR
•		Warsaw University of	sensor presented in the	his paper was designed to be a
Orgai	nızation(s):	Technology (Poland)	small and affordable i	radar sensor dedicated to small
			architecture and a b	prief description of the signal
		Synthetic aperture radars and	processing algorithm	s are illustrated in this paper.
Sessi	ion:	radar	The utility of the syste	em is supported by preliminary
			results from ground-b	based and airborne trials.
02.00	02-40	Creash D	The multiple simple	
03:20	0 – 03:40	Speech 2:	sub-space based met	hod to estimate Angle of Arrival
Title:		A Novel Criterion for Array	(AoA) of narrow-band	and uncorrelated signals. With
_	_	Geometry Optimization	the same number o	f antennas, the placement of
Roon	n: B		array elements has a	a significant effect on the array
		<u>Meysam Eskandari,</u> Seved Mohammad Karbasi	of AoA estimation en	nploving the MUSIC algorithm.
			In this paper, relatio	n of array geometry and AoA
0			estimation accuracy	is studied with some theoretic
Orgai	nization(s):	Sharif University of Technology	and simulation analys	of antennas) is proposed to
		(IIaII)	improve the accurac	cy in AoA estimation. Several
Sessi	ion:		practical and simula	tion experiments are given to
		Synthetic aperture radars and	justify the performance	e of the proposed method.
		radar		

Session Synthetic aperture radars and radar imagery Tuesday 21.09.2021 Chair: Prof Paulo Marques & Prof. Jerzy Pietrasiński

TIME (UTC)		
03:40 - 04:00	Speech 3:	Change detection in SAR radar imagery can be divided onto coherent (CCD) and non-coherent
Title:	Non-coherent change detection in real SAR satellite imagery with usage of the	(NCCD) methods. In the case of coherent methods, we have an increased sensitivity to changes (due to taking into account phase information) at the
Room: B	CFAR algorithms	expense of the incorporating phase noise, which in turn increases the level of false detections. In the
	Artur Gromek	case of incoherent methods, we do not take into account signal phase information but only its amplitude, which results in a-lower sensitivity to
Organization(s):	Warsaw University of Technology (Poland)	changes and a~lower level of false detections. Therefore, incoherent detectors often demonstrates better operating performance (ROC curves) than coherent ones while being simpler and easier.
Session:	Synthetic aperture radars and radar	
04:00 - 04:20	Speech 4:	In this paper, a novel method is proposed to achieve high range resolution imaging with orthogonal sub-
04:00 – 04:20 Title:	Speech 4: High-Resolution SAR Imaging with Orthogonal Sub-Band	In this paper, a novel method is proposed to achieve high range resolution imaging with orthogonal sub- band frequency diverse array. In the proposed system, the signals transmitted by adjacent subarray
04:00 – 04:20 Title: Room: B	Speech 4: High-Resolution SAR Imaging with Orthogonal Sub-Band Frequency Diverse Array	In this paper, a novel method is proposed to achieve high range resolution imaging with orthogonal sub- band frequency diverse array. In the proposed system, the signals transmitted by adjacent subarray has a frequency increment which is close to signal bandwidth. When transmits narrow band signal, this
04:00 – 04:20 Title: Room: B	Speech 4: High-Resolution SAR Imaging with Orthogonal Sub-Band Frequency Diverse Array <u>Mengdi Zhang</u> , Guisheng Liao, Jingwei Xu	In this paper, a novel method is proposed to achieve high range resolution imaging with orthogonal sub- band frequency diverse array. In the proposed system, the signals transmitted by adjacent subarray has a frequency increment which is close to signal bandwidth. When transmits narrow band signal, this system has the ability of Moving Target Indication (MTI). Meanwhile, this system is capable of high- resolution imaging by splicing spectrum technique. This papers focuses on the application of this system
04:00 – 04:20 Title: Room: B Organization(s):	Speech 4: High-Resolution SAR Imaging with Orthogonal Sub-Band Frequency Diverse Array Mengdi Zhang, Guisheng Liao, Jingwei Xu National Lab of Radar Signal Processing, Xidian University (China)	In this paper, a novel method is proposed to achieve high range resolution imaging with orthogonal sub- band frequency diverse array. In the proposed system, the signals transmitted by adjacent subarray has a frequency increment which is close to signal bandwidth. When transmits narrow band signal, this system has the ability of Moving Target Indication (MTI). Meanwhile, this system is capable of high- resolution imaging by splicing spectrum technique. This papers focuses on the application of this system in SAR imaging and proposes an approach to high range resolution imaging by spectrum splicing. Simulation results have verified the effectiveness of the proposed method.

Session Synthetic aperture radars and radar imagery Tuesday 21.09.2021 Chair: Prof Paulo Marques & Prof. Jerzy Pietrasiński

04:20 - 04:40	Speech 5:	In the present paper, a 2-D ISAR geometry and image reconstruction technique are discussed.
Title:	ISAR IMAGING PHASE CORRECTION ALGORITHM BASED ON ENTROPY	Based on the discrete geometry of the observed object and linear frequency modulation of emitted waveform. ISAR signal model is constructed. A
Room: B	MINIMIZATION	Range-Doppler image reconstruction algorithm with
	Andon Lazarov [®] , Christo Kabakchiev	by radial displacement of the mass center along line of sight (LoS) is compensated. Second, phases of higher order on azimuth direction due to long synthetic aperture length is compensated. Third, 2-D
Organization(s):	Nikola Vaptsarov Naval Academy (Bulgaria)	Fourier transform is applied for range and azimuth compression. A signal's phase correction algorithm based on entropy cost function is created to compensate for higher order phase terms due to long
Session:	Synthetic aperture radars and radar	aperture length and illustrated by numerical experiment.
04.40 - 05.00		
04.40 - 05:00	Speech 6:	The Miniaturized Synthetic Aperture Radar has the
Title:	Speech 6: Polarimetric Calibration of	The Miniaturized Synthetic Aperture Radar has the characteristics of 'anytime imaging', day or night from an airborne platform, so it is a promising candidate
Title:	Speech 6: Polarimetric Calibration of Mini SAR based on UAV	The Miniaturized Synthetic Aperture Radar has the characteristics of 'anytime imaging', day or night from an airborne platform, so it is a promising candidate for many applications, such as high-resolution terrain elevation mapping, coherent change detection, and
Title: Room: B	Speech 6: Polarimetric Calibration of Mini SAR based on UAV Platform	The Miniaturized Synthetic Aperture Radar has the characteristics of 'anytime imaging', day or night from an airborne platform, so it is a promising candidate for many applications, such as high-resolution terrain elevation mapping, coherent change detection, and crevasse detection. To reduce the phase difference,
Title: Room: B	Speech 6: Polarimetric Calibration of Mini SAR based on UAV Platform <u>Jiaxuan Liu,</u> Yixiang Luomei,	The Miniaturized Synthetic Aperture Radar has the characteristics of 'anytime imaging', day or night from an airborne platform, so it is a promising candidate for many applications, such as high-resolution terrain elevation mapping, coherent change detection, and crevasse detection. To reduce the phase difference, channel crosstalk, channel imbalance, and other effects between the channels (single, dual, or full
Title: Room: B	Speech 6: Polarimetric Calibration of Mini SAR based on UAV Platform Jiaxuan Liu. Yixiang Luomei, Xudong Yuan, Feng Xu	The Miniaturized Synthetic Aperture Radar has the characteristics of 'anytime imaging', day or night from an airborne platform, so it is a promising candidate for many applications, such as high-resolution terrain elevation mapping, coherent change detection, and crevasse detection. To reduce the phase difference, channel crosstalk, channel imbalance, and other effects between the channels (single, dual, or full Polarimetric), the author adopts a new Polarimetric calibration method. This method uses the reflector corner as the reference calibration point to accurately
Title: Room: B Organization(s):	Speech 6: Polarimetric Calibration of Mini SAR based on UAV Platform Jiaxuan Liu, Yixiang Luomei, Xudong Yuan, Feng Xu Fudan University (China)	The Miniaturized Synthetic Aperture Radar has the characteristics of 'anytime imaging', day or night from an airborne platform, so it is a promising candidate for many applications, such as high-resolution terrain elevation mapping, coherent change detection, and crevasse detection. To reduce the phase difference, channel crosstalk, channel imbalance, and other effects between the channels (single, dual, or full Polarimetric), the author adopts a new Polarimetric calibration method. This method uses the reflector corner as the reference calibration point to accurately calibrate the vertical channel system gain and the unbalance factor of the four polarimetric channels, without the need to make assumptions about the scattering characteristics of the scene. This method

Session Synthetic aperture radars and radar imagery Tuesday 21.09.2021 Chair: Prof Paulo Marques & Prof. Jerzy Pietrasiński

TIME (UTC)		
05:00 - 05:20	Speech 7:	Aperture Radar (SAR) images mostly require high-
Title:	Effects of SAR Resolution in Automatic Building Segmentation Using CNN	resolution images. The lack of datasets for historical and publicly available SAR images in high-resolution quality limits DL methods applications for SAR. We
Room: B		simulate SAR resolution scaling by applying filters
	<u>Sandhi Wangiyana,</u> Piotr Samczyński, Artur Gromek	with varying strength in the preprocessing step of the dataset. A segmentation model is trained on each dataset along with different model architecture and backbone. The Feature Pyramid Network (FPN)
Organization(s):	Warsaw University of Technology (Poland)	model achieved the best results while being robust for datasets with weak filtering.
Session:	Synthetic aperture radars and radar	

Session S	Session Signal and Image Processing for Medical Application I Wednesday 22.09.202	
Chair: Prof. Anton Popov & Prof. Piotr Augustyniak		v & Prof. Piotr Augustyniak
FIME (UTC)		
11:00 – 11:20	Speech 1:	Compression, Compressed Sensing and Arbitrary Sampling are all data reduction techniques
Title:	Distance Metrics for Classification of Arbitrarily	challenging the general sampling theory and investigated towards maintaining of original information untouched in geology astronomy
Room: A	Example	meteorology or medicine data are available in irregular intervals, other domains apply a priori
	Piotr Augustyniak®	knowledge about limitations of signal source. To the latter category belongs the ECG, where all recorders worldwide produce daily ca. 600TB of data with expected average storage time of order of 40 years.
Organization(s):	AGH University of Science and Technology (Poland)	Unfortunately direct processing of non-uniformly sampled time series is rarely applied due to lack of appropriate methods. In this paper we propose a Distance Metric and its usage to classification of 1-D
Session:	Signal and Image Processing for Medical Application I	classification error and computational complexity both are greater than in the case of uniform patterns, however the proposed algorithm is sampling model independent and may also be applied to uniform data.
11:20 – 11:40	Speech 2:	In this work, we apply the network physiology paradigm to retrieve information from central and
Title:	Mutual Information Analysis of Brain-Heart Interactions in	autonomic nervous systems before the focal epileptic seizure, represented respectively by
Room: A	Epileptic Children Ivan Kotiuchyi ^{1,2} , Riccardo Pernice ³ , Anton Popov ^{1,2} , Volodymyr Kharytonov ⁴ , Luca Faes ³	electroencephalogram (EEG) signals and R-R intervals (RRI), and investigate the presence and strength of brain-heart interactions by computing mutual information (MI) measures. Statistical significance of MI values was tested through surrogate time series generated with the random shuffle approach. Our results suggest that the proposed method for aligning signals representing
Organization(s):	 ¹National Technical University of Ukraine (Ukraine), ²Ciklum Data & Analytics, ³University of Palermo (Italy) ⁴TMO "Psychiatry", Kyiv (Ukraine) 	brain and heart activity measured with different sampling rates is capable of revealing coupling between RRI representing heart system, and aligned averaged power spectrum of brain processes, measured with EEG, resulting in significant MI. For electrodes C3, Fp2, Cz, and T4 in correspondingly α , β , γ , and total frequency bands, we obtain significantly smaller values of MI in the pre-ictal
Session:	Signal and Image Processing for Medical Application I	period in comparison with the baseline period, as well as a general decrease of significant and all estimated MI values before the focal seizure can be observed.

Session Signal and Image Processing for Medical Application I Wednesday 22.09.2021 Chair: Prof. Anton Popov & Prof. Piotr Augustyniak

TIME (UTC)		
11:40 – 12:00	Speech 3:	stroke patients with plegic hands, based on an
Title:	Hand measurement based on integrated vision system-	integrated vision system – Leap Motion. The device provides a simplified way to measure a set of hand
Room: A	Leap Motion	range of motions. Using the homogenous-matrix- based notation, we derive medically relevant medical
	Anna Wieteska ¹ , Justyna Redlicka ² , Katarzyna Koter ¹ , Igor Zubrycki ¹ ,	values. We provide a user interface for ease of data processing, experiments, and tracking patient progress.
Organization(s):	¹ Lodz University of Technology (Poland), ² Medical University of Lodz	
Session:	Signal and Image Processing for Medical Application I	
12:00 – 12:20	Speech 4:	We investigated selection of features used in various
12:00 – 12:20 Title:	Speech 4: A Study on Selection of HRV-	We investigated selection of features used in various machine learning algorithms employed for the detection of atrial fibrillation. The features were
12:00 – 12:20 Title: Room: A	Speech 4: A Study on Selection of HRV- based Features for Different Classifiers in Atrial Fibrilation Detection	We investigated selection of features used in various machine learning algorithms employed for the detection of atrial fibrillation. The features were derived from the analysis of Heart Rate Variability from ECG. We show how the feature selection impacts the statistical metrics of the atrial fibrillation detection and identify the best feature sets for
12:00 – 12:20 Title: Room: A	Speech 4: A Study on Selection of HRV- based Features for Different Classifiers in Atrial Fibrilation Detection <u>Szymon Buś</u> ¹ [©] , Konrad Jędrzejewski ¹ [©] , Przemysław Guzik ² [©]	We investigated selection of features used in various machine learning algorithms employed for the detection of atrial fibrillation. The features were derived from the analysis of Heart Rate Variability from ECG. We show how the feature selection impacts the statistical metrics of the atrial fibrillation detection and identify the best feature sets for particular classifiers.
12:00 – 12:20 Title: Room: A Organization(s):	Speech 4: A Study on Selection of HRV- based Features for Different Classifiers in Atrial Fibrilation Detection Szymon Buś¹ , Konrad Jędrzejewski¹ , Przemysław Guzik² , 1 Warsaw University of Technology (Poland) , 2 Poznan University of Medical Sciences (Poland)	We investigated selection of features used in various machine learning algorithms employed for the detection of atrial fibrillation. The features were derived from the analysis of Heart Rate Variability from ECG. We show how the feature selection impacts the statistical metrics of the atrial fibrillation detection and identify the best feature sets for particular classifiers.

Session Signal and Image Processing for Medical Application I Wednesday 22.09.2021 Chair: Prof. Anton Popov & Prof. Piotr Augustyniak

TIME (UTC)	Speech 5:	We present an inexpensive, passive device
12:20 – 12:40	Motivating wearable device	supporting patient's hand rehabilitation while their hand is in a plegic state. The device's stand-alone
Title: for plegic hand rehabilitation	capabilities allow patients to train their hands while in bed by reminding them to train using the set of	
Room: A Organization(s):	Ilona Dominik ¹ [©] , Ewa Praczko ² [©] , Igor Zubrycki ¹ [©] ¹ Lodz University of Technology (Poland), ² Neurological Rehabilitationand Rehabilitation Ward Municipal Medical Centre Jonsche (Poland)	exercises. A simple gamification scheme using flexion sensors and an accelerometer as input provides a way to motivate patients. Wifi connectivity to a cloud-based therapist interface allows monitoring of patient activity. The resulting device can support the hospital and house rehabilitation.
Session:	Signal and Image Processing for Medical Application I	
12:40 – 13:00 Title: Room: A	Speech 6: TELASSISTENT SERVICES USING THE 5G NETWORK ON A REMOTE GUIDE FOR THE	This article presents a teleassistant system for blind people used to navigate them during the movement. The system uses a smartphone, Intel RealSense depth camera and a dedicated Red5 server. The data sent from the depth camera allows for accurate
Organization(s):	BLIND PERSONS <u>Robert Kawecki,</u> Paweł Oleksy, Jarosław Kawecki, Piotr Korbel, Slawomir Hausman Lodz University of Technology (Poland)	measurement of the distance of the blind person from the obstacles that they include, which improves the quality of their navigation. The signal quality was ensured through the use of the 5G network, which was launched in a pilot version at the Lodz University of Technology. The article also presents the possibilities and options offered by the new generation of the telecommunications network.

Session Signal and Image Processing for Medical Application II Wednesday 22.09.2021

Chair: Prof. Tomasz Pięciak & Dr. Paweł Badura

TIME (UTC)		
	Speech 1:	The paper presents the results of studies on
03:00 – 03:20		authentication of human subjects, using
	Experimental studies on the	electroencephalography (EEG) signals. Many
Title:	efficiency of people	research results presented in the literature assume
_	authentication using EEG	that the data used both for training and testing may
Room: A	data from the same and	come from the same set. In this work, we verified how
	different examinations	the authentication results change if the data used for
		training and testing are from separated recording
	Renata Plucińska ¹	sessions. The examinations used in the studies were
	Konrad Jędrzejewski ¹	collected from 36 healthy adults, and 20 EEG
	Jacek Rogala ²	sessions planned for each person. We evaluated the
	Urszula Malinowska ²	statistical metrics of the considered authentication
	Marek Waligóra ²	methods based on the analysis of signal features
		(parameters) from different EEG bands: separately
		for delta, theta, alpha, beta, and gamma, as well as
		For the combinations of realtires from the different
	Warsaw University of	EEG bands. In the lifst approach, the lifst 15
Organization(s).	Lechnology (Poland),	examinations from each participant were used for
		approach 75 % of footures from each session were
	Experimental Biology (Poland)	used for training and the remaining 25 % for testing
		The results show that the statistical metrics of
		authentication analyzes that were obtained using
		signals from the same set both for training and
		testing turned out to be better than when we split the
		data using individual sets for training and
		examination In practice the authentication is
		performed based on a current examination which is
		different from the examinations used for training
		Therefore, for the proper evaluation of the
		authentication methods, only the metrics obtained
		when the examinations used for training and testing
		are separated. The results suggest also that while
		increasing the number of the frequency bands from
	Signal and Image Processing	which the features are used in the neural networks.
Session:	for Medical Application II	the differences between the two approaches are less
		significant but still visible.

Session Signal and Image Processing for Medical Application II Wednesday 22.09.2021

Chair: Prof. Tomasz Pięciak & Dr. Paweł Badura

TIME (UTC)		
03:20 - 03:40	Speech 2:	Wireless capsule endoscopes record and transmit pictures that are used to diagnose the human
Title:	Improved Wireless Capsule Endoscope Localization with	digestive tract. The localization of the capsule allows precise identification of regions with lesions. This can
Room: A	Phase Detection Algorithm	be performed basing on the processing of signal received from the capsule. Since human body is
	<u>Paweł Oleksy.</u> Łukasz Januszkiewicz Lodz University of Technology	complex heterogenous environment, that influences the propagation of wireless signal it is difficult to precisely determine the distance between the transmitter and the receiver upon the analysis of received power level. The article presents the
Organization(s): Session:	(Poland) Signal and Image Processing for Medical Application II	improved method of locating endoscope capsules with the use of phase detection algorithm. This algorithm uses adaptive estimation of human body model permittivity for each capsule position. Also the influence of helical and dipole antennas on the localization accuracy were examined.
03:40 - 04:00	Speech 3:	Relationship between cognitive impairment and
Title:	Detection of Dyslexia Using	irregularities in eye movements during monitoring visual or textual information has been the target of
Room: A	Eye Tracking	many scientific studies. The results diagnostics based on data obtained from the eve tracker actually
	Boris Nerusil, Jaroslav Polec, Juraj Skunda	showed differences between healthy and diagnosed individuals. For example, early diagnosis of Alzheimer's disease [1], the results of the study showed that the technology of eye tracking with comparison cognitive functions can be successfully used to differentiate older adults and older patients diagnosed with a neurological disorder. The method can also be used for detection of memory impairment associated with mild cognitive impairment (MCI).
Organization(s):	Slovak University of Technology in Bratislava(Slovakia)	Another publication deals with the detection of autism spectrum disorder (ASD) during Internet searches, or web browsing [2] and have been demonstrated differences between healthy and diagnosed individuals. An experiment comparing differences in eye movement in schizophrenia and ASD [3]. It did not show the characteristics of eye movements that occurred in people with schizophrenia abnormalities in people with ASD. The results showed that abnormalities in eye movement in individuals with ASDs were not as severe as schizophrenia, at least in terms of the characteristics examined here. Published experiments also dealt with the detection of signs of Amyotrophic Lateral Sclerosis (ALS) [4] or by detecting dyslexia in children while reading text [5]. According to the analysis of the current state and

available scientific research, the connection is thus proven with specific eye movement in the subjects and the possible occurrence of any of defined failures based on previous tests. That's why we focused our research to a specific group diagnosed with dyslexia and designed to test and test a method that can be a useful tool in the diagnosis of dyslexic disorder. This paper presents a method for detection of cognitive disorder based on eye tracking during reading. The goal of this research is to give another perspective and extend the experiments conducted in Sweden recently published in the article Screening for Dyslexia Using Eye Tracking during Reading. Our experiments are accomplished on dataset that comprises of 185 recordings of participants that was provided by the Swedish researchers. The participants were categorized into two groups - High Risk (HR) and Low Risk (LR). 97 subjects (76 males and 21 females) were allocated to the HR group and 88 subjects (69 males and 19 females) were identified without dyslexia belonging to the LR group. An early detection of subjects suffering from cognitive impairment is beneficial in order to undergo therapy at an early stage and that is why the experiments were conducted on subjects attending the third grade of primary school (9 to 10 years old). It has been wellknown for a long time that the eye movements of dyslexic subjects differ compared to healthy subjects without reading difficulties. Eye movements captured by using eye tracker provide an unique visual path of attention and perception during reading activity. If we analyze these visual paths, it is possible to obtain useful information. The eye movements were recorded whilst a short text was presented to participants. This text contained 10 simple sentences adapted to the age of subjects Fig. 1. To detect eye movements was used goggle-based system Obe-2 TM (formerly Permobil Meditech Inc., Woburn MA,). System operates on recording infrared corner reflection of subject. The eye movements were recorded in horizontal and vertical direction at frequency 100 Hz.

Session:

Signal and Image Processing for Medical Application II

Session Signal and Image Processing for Medical Application II Wednesday 22.09.2021

Chair: Prof. Tomasz Pięciak & Dr. Paweł Badura

TIME (UTC)	Speech 4:	The research is simpled to study the changes of the
04:00 - 04:20	Speech 4.	emotion-induced variations in the brain electrical
Title:	Analysis of Brain Reaction to Emotional Faces	activity. We focused on revealing alterations in cognitive mechanisms, caused by the presentation of neutral human faces among stimuli among faces with
Room: A Organization(s):	Bohdan Vodianyk ¹ , Ivan Seleznov ^{1,2} , Mariia Chernykh ³ , Igor Zyma ³ , Anton Popov ^{1,4} , Ken Kiyono ² ¹ Igor Sikorsky Kyiv Polytechnic Institute (Ukraine), ² Osaka University (Japan), ³ :National University of Kyiv (Ukraine), ⁴ Ciklum Data & Analytics (Ukraine)	either negative or positive expression. To access the changes, Fourier Power Spectral Density (PSD) and the scaling exponent values obtained from the detrended moving average analysis (DMA) were compared for the series when emotionally neutral stimuli were presented after positive and negative images with faces. In the results, the cortical mapping of the evoked responses were obtained and analyzed to reveal the manifestations of the specific brain activity.
Session:	Signal and Image Processing for Medical Application II	
04:20 - 04:40	Speech 5:	One of the most important issues in radar-based
Title:	Cross-domain human motion	amount of reliable labeled data to train the classification model. We train classification models
Room: A	Xianghan Yang, Zhaoyang Xia, Feng Xu, Yinan Mo	based on simulated samples to classify measured samples across domains to solve the problem of labeled data acquisition in human motion recognition. First, we use the motion capture dataset of Carnegie Mellon University (CMU MOCAP) to simulate the frequency modulated continuous wave (FMCW) radar echo signals of 41 target points of human body and generate a certain amount of simulated labeled feature data to perform supervised learning to train a Convolutional Neural Network (CNN) classification model. After that we apply TI's 77~81Ghz AWR1642 BOOST ODS millimeter wave radar evaluation board to collect the echo signals of 5 classes of human motion and then perform data processing to generate measured feature data. Experiment results show that there are similar characteristics between the feature spectrograms of 5 classes of human motions generated by simulation and those of the measured data. And the classification model based on micro- Doppler (MD) spectrogram feature and micro- Doppler-Horizontal Angle-Vertical Angle (MD-HA- VA) combined spectrogram feature in the simulation

Session:	Signal and Image Processing for Medical Application II	domain can achieve the average classification accuracy of 92.0% and 94.4% respectively in the real domain, which proves the feasibility and practicability for cross-domain human motion recognition.

Plenary talks (Extended):

	Session Geoscience and Remote Sensing Wednesday 22.09.2021 Chair: Prof Hanna Rothkaehl & Prof. Krzysztof Kulpa	
TIME (UTC) 11:00 – 11:40 Title:	<u>Keynote talk</u> Advances in Multi-Variable, Non-Gaussian Stochastic Parametrization	
Room: A	Prof. Patrick Dewilde	
11:40 – 12:00 Title: Room: B Organization(s):	Speech 1: Detection of periodic disturbances in LOFAR calibration solutions <u>Katarzyna Budzinska</u> ¹ , Maaijke Mevius ² , Marcin Grzesiak ¹ , Hanna Rothkaehl ¹ ¹ Space Research Centre PAS (Poland), ² ASTRON (Netherlando)	Calibration solutions of astronomical observations contain information on ionospheric disturbances with sensitivity of less than 1 mTECU. We investigate a method to extract the wave parameters of periodic disturbances by means of a wavelet transform analysis. We obtain results consistent with the results from other radio interferometers regarding frequency components. More research is needed to improve the determination of a wavenumber vector.
Session:	² ASTRON (Netherlands) Geoscience and Remote Sensing	
12:00 – 12:20 Title: Room: B Organization(s):	Speech 2: Algorithm for Creating Propagation Attenuation Maps Based on Parabolic Equation Method Michał Kryk®, Krzysztof Malon®, Jan M. Kelner®	Modern wireless communication systems use various technological solutions to increase the efficiency of created radio networks. This efficiency also applies to radio resources. To improve it, radio environment maps (REMs) are used. It is common to use the REM in modern ad-hoc mobile networks (MANETs), which are used, e.g., in the military. In this case, the use of new technologies such as software-defined radio and network, cognitive radio, sensing, and building electromagnetic situational awareness made it possible to implement REM in modern MANETs. Propagation attenuation maps are one of the crucial REM elements that allow for
Session:	Geoscience and Remote Sensing	determining the ranges of radio network nodes. In this case, considering the topography in propagation maps enables a more realistic analysis. For this aim, in the paper, we propose a novel algorithm of creation propagation attenuation maps based on the parabolic equation method.

Se	ession Geoscience and Remote	Sensing Wednesday 22.09.2021
	Chair: Prof Hanna Rothka	aehl & Prof. Krzysztof Kulpa
TIME (UTC) 12:20 – 12:40	Speech 3:	The aim of the study is to obtain quantitative information on the conditions of ionospheric plasma
Title:	Ionospheric scintillation diagnostic on LOFAR ILT network in single station	we use the S4scintillation index parameter, which is widely used in other diagnostic techniques, such as
Room: B	mode <u>Mariusz Pozoga,</u> Helena Ciechowska, Marcin Grzesia, Hanna Rothkaehl [®] , Roman Wronowski, Barbara Matyjasiak [®] , Łukasz Tomasik [®] , Katarzyna Budzińska	GNSS. This paper presents a method for determination of ionospheric scintillation intensity with the use of single LOFAR (LOw-Frequency ARray for radio astronomy) station - PL610. We show the specificity ofLOFAR measurements, related problems, and methods to obtain ionospheric scintillation index
Organization(s):	Space Research Centre Polish Academy of Science (Poland)	
Session:	Geoscience and Remote Sensing	
12:40 – 01:00 Title: Room: В	Speech 4: Polarimetric-radar drop size evaluation for wind speed estimate based on Weber criterion <u>Yuliya Averyanova,</u> Felix Yanovsky, Olga Shcherbina, Ivan Ostroumov, Nataliia Kuzmenko, Maksym Zaliskyi, Oleksandr Solomentsev, Olha Sushchenko	In this paper, the algorithm for wind speed estimate on the base of Weber numbers is demonstrated using one the connection between backscattering from liquid hydrometeors and drop sized in reflecting volume. The method of drop size evaluation with polarimetric radar is demonstrated and an algorithm for wind speed estimate on the base of Weber criterion, breakup conditions, and hydrometeors discrimination with similar polarization properties was proposed
Organization(s):	National Aviation University (Ukraine)	
Session:	Geoscience and Remote Sensing	

	S	ession Geoscience and Remote	Sensing Wednesday 22.09.2021
		Chair: Prof Hanna Rothka	ehl & Prof. Krzysztof Kulpa
TI 0' Ti R	IME (UTC) 1:00 – 01:20 itle: oom: B	Speech 5: Determining ionospheric drift and anisotropy of irregularities from LOFAR core measurements <u>Marcin Grzesiak</u> , Mariusz Pożoga, Barbara Matyjasiak, Dorota Przepiórka, Hanna Rothkaehl	We take the frozen-in assumption of the scatter evolution and derive simple formulas for characteristics of the spatiotemporal correlation function of the observed diffraction pattern. Using Low-Frequency Array (LOFAR) Cassiopeia intensity observation, we can validate the assumptions qualitatively and compute diffraction pattern velocities for three different geophysical conditions. The results allow us to attribute estimated quantities to ionospheric irregularities.
0	rganization(s):	(Poland)	
S	ession:	Geoscience and Remote Sensing	

	Session Radar Signal Processing	g Wednesday 22.09.2021
	<u>Chair: Dr. Michele Fiorini &</u>	Dr. Łukasz Maślikowski
TIME (UTC) 03:00 - 03:20	Speech 1:	In the paper, a new class of continuous time domain signals is proposed. Also, discrete
Title:	A Modeling Problem of a Continuous Time Domain Signal by its Discrete	equivalent signals are deliberated. The paper presents necessary analytical formulae to prove desired properties of a continuous, as well as a
Room: B	Boguslaw Szlachetko [®] , Zbigniew Swietach [®]	discrete spectrum e.g. these signals are practically passband restricted up to the level of relevance equals -120 ~ dB. the proposed signals can be used to test any passband system like radar, telecommunication, and others. The paper presents promising results of computer
Organization(s):	Wroclaw University of Science and Technology (Poland)	simulations, which are accurate enough to be suitable for engineering applications. Also, the influence of the protective band placed at both ends of a usable frequency band on the quality of
Session:	Radal Signal Flocessing	representation of a continuous spectrum in a finite computer memory is considered.
03:20 - 03:40	Speech 2:	We present a sampling hardware that can be used as a demonstration system for the triggerless
Title:	TRISH — a Triggerless Bandom Interleaved Sampling	random interleaved sampling method. The hardware is capable of acquiring sample-trains of
Room: B	Hardware	lengths 2, 3 and 4 with a programmable inter- sample distance. Each sample-train consists of
	Marek Wojciech Rupniewski	samples which originate from separate ADC channels. The whole system is supervised by a single board computer (Raspberry Pi), which also
Organization(s):	Warsaw University of Technology (Poland)	forms a communication interface for the system. The paper proposes a calibration method, which allows for equalization of the voltage gains in the
Session:	Radar Signal Processing	individual ADC channels, as well as equalization of the inter-sample time distances.
03:40 - 04:00	Speech 3:	The author presents a method to mitigate received signal power loss in presence of the multipath effect. The method is dedicated to phased array
Title:	Mitigating of received signal	radars. It is based on the observation that signal amplitudes from various antenna elements may
Room: B	multipath effect in phased array radars	significantly vary between each other in the multipath scenario and uses beamforming with modified weights adjusted to these amplitudes. As
	Jacek Gambrych	a result, the improvement of Signal-to-Noise Ratio of 2-3 dB is possible to obtain. The results of the
Organization(s):	Warsaw University of Technology (Poland)	method were based on simulations performed. Moreover, a negative impact on the antenna receiving pattern and sensitivity to changes in
Session:	Radar Signal Processing	surface reflection coefficient has been discussed.

Session Radar Signal Processing

Wednesday 22.09.2021

Chair: Dr. Michele Fiorini & Dr. Łukasz Maślikowski

TIME (UTC)	Speech 4:	The ground clutter is one of the limiting factors for efficient target detection in noise radar. Thus, full
04:00 - 04:20	Ground Clutter Analises in Noise Radar using	understanding of clutter return is vital for designing and exploitation of noise radar. The paper presents
Title:	Unmatched Filter Concept	enhanced method for analyzing ground clutter return free from masking effects originated by direct
Room: B	Krzysztof Kulpa [®] , <u>Maślikowski Łukasz[®],</u> Marcin Kamil Bączyk [®] <i>Warsaw University</i> of	crosstalk or strong clutter return. The paper presents theoretical consideration and analyses of recorded echoes. The method can be apply for clutter analyses in noise based scaterometer, e.g used for measuring scattering effects and also for better understanding
Organization(s):	Technology (Poland)	of ground clutter effects in noise radars
Session:	Radar Signal Processing	
04:20 - 04:40	Speech 5:	This paper presents a simple method allowing to extract information of unknown phase offsets
Title: Room: B	Calibration of Transmitting and Receiving Array of a Radar using MIMO Measurement	between elements of transmit and receive antenna arrays of a collocated MIMO radar. It is shown how to extract independent vectors of phase offsets between receiving and transmitting elements using normalization with averaging as well as SVD
Organization(s):	<u>Łukasz Maślikowski</u> Warsaw University of Technology (Poland)	decomposition of measurement matrix obtained for observation of calibration target placed at known angular position.
Session:	Radar Signal Processing	
04:40 – 05:00	Speech 6:	The bidirectional analytical ray tracing (BART) is
Title:	A Hybrid Algorithm for Radar Cross Section Calculation of	(PO), to calculate the multiple reflections of electromagnetic waves by dividing the target into
Room: B	Electrically Large Targets Zhuo Liu, Xu Zhang, HaiPeng Wang, Feng Wang Fudan University (China)	many small facets, which can calculate the radar cross section (RCS) of electrically large targets quickly. However, due to that GO can only calculate the contribution of incident and reflection in some facets, cannot solve the diffraction problem such as edge and vertex. This problem causes the calculation results of BART to be inaccurate under certain angles. The uniform geometrical theory of diffraction (UTD) can compensate for the shortcomings of GO to overcome the failure of GO in the shadow area and the discontinuity at the boundary between shadow area and bright area. A hybrid algorithm combining the BART and UTD is proposed in this paper. UTD is introduced into the BART to solve the problem that there is no electric field in the shadow area and compensate for the discontinuity at the boundary.
Session:	Radar Signal Processing	While ensuring calculation efficiency, it improves the accuracy of BART in calculating the RCS of electrically large targets.

Session Signal Processing Components Thursday 23.09.2021		
Chair: Prof. Mario Greco & Dr. Garcia Cava David		
TIME (UTC) 11:00 – 11:40		
Title:	On enhancing data-driven structural health monitoring with explicit and implicit procedures	
Room: A	C)r. David García Cava
11:40 – 12:00	Speech 1:	The multiple-input multiple-output (MIMO) transmission concept targets at increasing the
Title:	Resource Allocation in	throughput of communication links by employing
Room: A	Correlated and Non- Correlated MIMO Systems	in digital transmission, for such systems the bit-error probability is the crucial quality criterion also
	<u>Stefan Klobe</u> ¹ , Andreas Ahrens ¹ , Christoph Lange ² ,	known as the bit-error ratio (BER). If simple MIMO transmission channel and data source models are assumed, the BER can be computed analytically and
Organization(s):	Ingo Müller ¹ , Petra Leitert ¹ ,	with the respect to a minimum BER. In this
Session:	Jelena Zascerinska ¹	contribution, we consider BER minimization for MIMO links with uncertainty in their channel parameters under good and poor scattering conditions. Optimal solutions such as the Lagrange
	¹ University of Technology, Business and Design (Germany), ² Hochschule für Technik und	in the transmitter are designed to achieve the best link performance. However, sub-optimum solutions are able to achieve a similar performance with a
	Wirtschaft Berlin, University of Applied Sciences (Germany)	analytical results show that the achievable performance strongly depends on the number of active MIMO layers as well as the assigned transmit
	Signal Processing Components	transmitted symbol. Furthermore it will be shown that the natural choice of creating MIMO layers with identical BER's does not guarantee the best performance.

Session Signal Processing Components Thursday 23.09.2021 Chair: Prof. Mario Greco & Dr. Garcia Cava David TIME (UTC) Speech 2: Wheel slippage is mostly an unwanted but 12:00 - 12:20sometimes inevitable disturbance, especially in mobile robots with over-constrained suspension or Comparison of slip-Title: operating on slippery surfaces. Improving odometry compensated odometry for alone can increase overall localization accuracy, tracked, four- and six-wheel Room: A especially when other sources of position information vehicles are unavailable. There are several publications dealing with slippage detection and odometry Łukasz Chlebowicz, correction, however, they are mostly related to Mateusz Kujawiński, identification of surface for single specific robot type Damian Wroński, and they require external measurement system for Bartłomiej Cybulski, tests. This paper presents a methodology and Grzegorz Granosik experiment comparing slip-compensated odometry and tries to extrapolate it to three different suspensions. The main idea behind this article was Lodz University of Technology Organization(s): to check, if different mechanical suspensions with (Poland) the same kinematic structure (skid-steering), could achieve similar localization accuracy according to the same slip compensation method and using only onboard sensors. The research platform was a custom modular robot. Its chassis allows it to swap the suspension to skid steer six- and four-wheel and tracks. Four chapters of the paper are organized as follows: in the Introduction, the problem is described in mathematical formulas, then the experiment setup, process and a method for calculating an algorithmspecific coefficient are discussed, followed by Session: Signal Processing Components presentation of results and summary.

Session Signal Processing Components Thursday 23.09.2021

Chair: Prof. Mario Greco & Dr. Garcia Cava David

TIME (UTC)	Speech 3:	In this paper, a multi-dimensional feature learning
12:20 – 12:40	Human Behavior Recognition	accuracy and generalization performance of human
Title:	Feature Learning of	through the analysis of the radar echo reflected by
Room: A		the Doppler spectrum, the azimuth spectrum and the
	<u>Xiangfeng Wang</u> , Zhaoyang Xia, Haipeng Wang, Feng Xu	sliding window method is designed to extract 6 single-channel image features and 6 three-channel image features that can effectively represent human behaviors. Finally, a lightweight convolutional neural network (CNN) is used to learn and recognize multi-
Organization(s):	Fudan University (China)	dimensional behavior features. In order to evaluate the effectiveness of the proposed method, a dataset of six categories of behavior were collected from 3 people at multiple positions. The experimental results show that, compared with other features, the combined feature of range-time map (RTM), Doppler- time map (DTM) and azimuth-elevation-time map (AETM) has best classification performance for 6 human behaviors. The recognition accuracy rates for
Session:	Signal Processing Components	untrained people B and C are 91.7% and 86.7%, respectively
12:40 - 01:00	Speech 4:	Aerodynamic instabilities in centrifugal compressors
12:40 – 01:00 Title: Room: A	Speech 4: Evaluation of EMD and SSA sensitivity for efficient detection of aerodynamic	Aerodynamic instabilities in centrifugal compressors are harmful phenomena affecting machines efficiency and in severe cases leading to failures of the compressing system. Efficient instabilities detection during compressor operation is a
12:40 – 01:00 Title: Room: A	Speech 4: Evaluation of EMD and SSA sensitivity for efficient detection of aerodynamic instabilities in centrifugal compressors	Aerodynamic instabilities in centrifugal compressors are harmful phenomena affecting machines efficiency and in severe cases leading to failures of the compressing system. Efficient instabilities detection during compressor operation is a challenge, but of utmost importance from economical and safety point of view. The most sensitive detection is possible with use of a pressure sized from inside
12:40 – 01:00 Title: Room: A	Speech 4: Evaluation of EMD and SSA sensitivity for efficient detection of aerodynamic instabilities in centrifugal compressors Mateusz Stajuda ^{1,2} , David Garcia Cava ² , Grzegorz Liskiewicz ¹	Aerodynamic instabilities in centrifugal compressors are harmful phenomena affecting machines efficiency and in severe cases leading to failures of the compressing system. Efficient instabilities detection during compressor operation is a challenge, but of utmost importance from economical and safety point of view. The most sensitive detection is possible with use of a pressure signal from inside of the compressor because the instabilities effect is first visible there. Detection of aerodynamic instabilities results in specific challenges, as the pressure signal is often very noisy and contains high amount of randomness. What is more, the surge – most severe instability, can develop very quickly. In
12:40 – 01:00 Title: Room: A	Speech 4: Evaluation of EMD and SSA sensitivity for efficient detection of aerodynamic instabilities in centrifugal compressors Mateusz Stajuda ^{1,2} , David Garcia Cava ² , Grzegorz Liskiewicz ¹ ¹ Lodz University of Technology (Poland), ² University of Edinburgh (UK)	Aerodynamic instabilities in centrifugal compressors are harmful phenomena affecting machines efficiency and in severe cases leading to failures of the compressing system. Efficient instabilities detection during compressor operation is a challenge, but of utmost importance from economical and safety point of view. The most sensitive detection is possible with use of a pressure signal from inside of the compressor because the instabilities effect is first visible there. Detection of aerodynamic instabilities results in specific challenges, as the pressure signal is often very noisy and contains high amount of randomness. What is more, the surge – most severe instability, can develop very quickly. In some cases fractions of seconds are enough for it to happen. Therefore, the method of detection should be sensitive to instabilities, but also robust and quick. The aim of this study is to investigate and compare the performance of Empirical Mode Decomposition (EMD) and Singular Spectrum Analysis (SSA) in the

Plenary talks (Extended):

Session Localization and Tracking Thursday 23.09.2021		
Chair: Dr. Rupniewski Marek & Prof. Marco Martorella		
TIME (UTC)		Keynote talk
03:00 - 03:40		
Title:	Recent advances in 3D Radar Imaging of Non-Cooperative Targets	
Room: A	Prof. Marco Martorella	
03:40 - 04:00	Speech 1:	A new algorithm for 3D localization in multiplatform
Title:	3D Localization for	multiple receivers, is proposed. To take advantage of
Room: A	Multiplatform Radar Networks with Deployable Nodes	the monostatic sensor radiation pattern features, ad- hoc constraints are imposed in the target localization process. Therefore, the localization problem is formulated as a non-convex constrained least
Organization(s):	Angela Marino ¹ , Augusto Aubry ¹ , Antonio De Maio ¹ , Paolo Braca ² ¹ University of Naples Federico II (Italy), ² Centre for Maritime Research and Experimentation (CMRE) (Italy)	Square (LS) optimization problem which is globally solved in a quasi-closed-form leveraging Karush- Kuhn-Tucker (KKT) conditions. The results corroborate the effectiveness of the new strategy which is capable of ensuring a lower RMSE than counterpart methodologies, especially in the low Signal to Noise Ratio (SNR) regime.
Session:	Localization and Tracking	
04:00 – 04:20 Title:	Speech 2:	The following paper presents an adaptive anchor pairs selection method intended for use in ultra- wideband (LIWB) Time Difference of Arrival (TDOA)
Room: A	Selection in a TDOA-based System Through Robot Localization Error Minimization	based positioning systems. The method consist in dividing the area covered by the system into several zones and assigning them anchor pair sets. The pair sets are determined during calibration, based on localization root mean square error (RMSE). The
Organization(s):	Marcin Kolakowski D Warsaw University of Technology (Poland)	calibration assumes driving a mobile platform equipped with a LiDAR sensor and an UWB tag through the specified zones. The robot is localized separately based on a large set of different TDOA pairs and using a LiDAR, which acts as the reference. For each of the zones, the TDOA pairs set for which the registered RMSE is lowest is selected and used for localization in the routine system work. The proposed method has been tested with
Session:	Localization and Tracking	simulations. The results for both static and dynamic scenarios have proven that the adaptive selection of the anchor nodes leads to an increase in localization accuracy.

Session Localization and Tracking Thursday 23.09.2021

Chair: Dr. Rupniewski Marek & Prof. Marco Martorella

04.20 04.40	Speech 3:	The paper investigates measurement error
04.20 - 04.40	Measurement Frror	blocks in FMCW (Frequency-Modulated Continuous-
Title:	Correlation in Processing of	Wave) radar. The problem is analyzed theoretically
Room: A	Overlapping Blocks in FMCW Radar	by discussing impact of measurement error correlation on tracking and mathematical evaluation of the effect. The results are confronted with
	Krzysztof Stasiak, Marek Ciesielski, Mariia Khyzhniak, Marcin Żywek, Marek Rupniewski	simulation and data from an actual experiment. The paper describes predicting measurement error correlation to allow for proper addressing the issue in the tracking subsystem
Organization(s):	Warsaw University of Technology (Poland)	
Session:	Localization and Tracking	
04:40 - 05:00	Speech 4:	The localization of radio emitters is commonly used
Title:	Overlaping based Dedie	in the position access end receive anarotional ac
	Overlaping-based Radio	radio navigation, search and rescue operations, as
Boomi A	Signal Processing for SDF	well as in military applications such as blue force
Room: A	Signal Processing for SDF Location Method	well as in military applications such as blue force tracking (i.e., positioning of own troops), communication (COMINT) or electronic intelligence
Room: A Organization(s):	Signal Processing for SDF Location Method Rafał Szczepanik Jan M. Kelner Cezary Ziółkowski Military University of Technology (Poland)	well as in military applications such as blue force tracking (i.e., positioning of own troops), communication (COMINT) or electronic intelligence (ELINT), and electronic warfare. Depending on the location technique used, different signal processing methods are used. In this paper, we present an efficient and adaptive signal processing method for the signal Doppler frequency (SDF) location method. This method is based on the variability of the Doppler curve, the shape of which is distinctive for the mutual position of the transmitter in relation to the receiver trajectory or vice versa. The proposed approach is based on an overlap technique that enables obtaining a sufficient number of Doppler frequency

	AAAA
Signal	
Processing S	Symposium 🏸

Plenary talks (Extended):

S	Session Radar systems and applic	cation Thursday 23.09.2021
Chair: Prof. Gaspare Galati & Prof. Jacek Misiurewicz		
TIME (UTC)		Kevnote talk
11:00 – 11:40		
Title	The Trust and Truth of Digitalisation in Maritime Domain: where are we?	
	I	Dr. Michele Fiorini
Room: B		
11:40 – 12:00	Speech 1:	This paper presents preliminary results of estimating the rotational speed of the helicopter
Title:	Estimation of Rotational Speed	rotor using the short-time Fourier transform (STFT)
Room: B	of Helicopter Rotor Through Horizontal Synchrosqueezing	synchrosqueezing (HS) in the time-frequency (TF)
Organization(s): Session:	Karol Abratkiewicz ¹ , Jacek Gambrych ¹ , Krzysztof Stasiak ^{1,2} , Piotr Samczyński ^{1,2} , ¹ Warsaw University of Technology (Poland), ² XY-Sensing Ltd., Warsaw, (Poland) Radar systems and application	domain. The presented theory is supported by real- life data obtained using a small, high-resolution radar system during a measurement campaign. The outcomes illustrated in the paper show a pronounced potential of using TF techniques in the analysis of micro-Doppler radar signals and extracting additional content on target parameters that can be used in classification and parametrization procedures. It is presented that using the concentrated version of the spectrogram, one can distinguish more details about a non- cooperative target than the classical STFT, which in this work was used for assessing target parameters.
12:00 – 12:20 Title: Room: B Organization(s):	Speech 2: Four-Channel Ground-Based C-Band FMCW Radar Demonstrator Jakub Kamil Julczyk, Krzysztof Stasiak, Damian Gromek, Marek Ciesielski <i>Warsaw University of Technology</i> <i>(Poland)</i>	Based on the long-known and well-described FMCW radar design techniques, this paper introduces a four-channel FMCW radar system build from COTS (Commercial Off-The-Shelf) elements, for imaging purposes. Starting from a short historical view of the matter in question, general advantages, and motivations standing behind the developed solution, the article presents the theory of operation of FMCW radar, as well as the construction of analog part, digital part, and developed software. Signal processing algorithms are also covered as a starting point for more advanced techniques which may be further implemented. The developed radar system allows using of wide bandwidth – up to 1 GHz – which gives the resolution up to tenths of centimeters, and a high rate of pulse repetition frequency (8 kHz).
		which gives the opportunity to detect high-speed objects.

Session Radar systems and application Thursday 23.09.2021

Chair: Prof. Gaspare Galati & Prof. Jacek Misiurewicz

TIME (UTC)		
	Speech 3:	The periodical Doppler spectrum signatures
12:20 – 12:40		originated from rotating blades of multi-rotor drones
	Analysis of Spectrum	are promising features for their classification in
Title:	Signatures from Rotating	radar systems. The structure of the spectrum
D	Blades of Small Drone	signature varies not only with the drone types but
Room: B		also with the parameters of the illuminating wave
	<u>Ekaterina Plotnitskaya,</u>	and the radar geometry. This paper locuses on
	Evgenii Vorobev,	ineoretical and experimental analysis of spectrum
	Vladimir Veremyev	signatures norm totalling blades made of different
		nolarizations and histatic angles
	Saint Potorsburg Electrotochnical	polarizations, and bistatic angles.
Organization(s).	Iniversity "I FTI	
• . gaa	(Russian Federation)	
Session:	Radar systems and application	

Session Passive Radar Thursday 23.09.2021

Chair: Dr. Mateusz Malanowski & Prof. Gomez-del-Hoyo, Pedro-Jose

TIME (UTC)	Speech 1:	Clobal Desitioning System (CDS) actallitas are
03:00 - 03:20	Speech 1.	promising illumination opportunity for Passive
Title:	2D Ground Target Location Using GPS based Passive Radar	Radar systems due to their global coverage and the availability of multiple satellites wherever over the world, but their low power at ground level limits
Room: B	Pedro-Jose Gomez-del-Hoyo [®] , María-Pilar Jarabo-Amores [®] , David Mata-Moya [®] , Nerea Rey-Maestre [®] , Javier Rosado-Sanz [®]	system coverage. In this paper, a GPS based Passive Radar exploiting digital array processing techniques is presented for ground target location. To face signal level problems, a processing scheme combining reconstructed reference signals, adaptive filtering techniques and spatial filtering is implemented. Conventional beamforming techniques are used to increase target echo level
Organization(s):	University of Alcalá (Spain)	before the detection stage, and high resolution DoA estimation techniques are applied to estimate targets' azimuth. Tacking into account the system geometry, range and azimuth information, ground targets can be located. Real radar data is used to
Session:	Passive Radar	analyse system operation. During the measurement campaign, a cooperative vehicle was employed for validation purposes. Results confirm GPS signals for ground targets detection and localization.
03:20 - 03:40	Speech 2:	The advantages of passive radars include quiet
Title:	Preliminary detection results	designed to be
Room: B	obtained with experimental airborne passive radar <u>Rafał Rytel-Andrianik</u> [®] , Krzysztof Kulpa [®] , Krzysztof Stasiak, Mateusz Malanowski [®]	"stealth" for active monostatic radars utilizing higher frequency bands. As the technology of ground based passive radars is already quite established, airborne passive radars are rather new and are being actively developed. In the proposed paper we present first results obtained in the prototype airborne passive radar that instead of its own transmitter utilizes omnipresent DVB-T television
Organization(s):	Warsaw University of Technology (Poland)	broadcast. The radar system structure and algorithms are described. Then examples of clearly visible echoes of a fighter iet and a ship are
Session:	Passive Radar	presented.

Session Passive Radar Thursday 23.09.2021

Chair: Dr. Mateusz Malanowski & Prof. Gomez-del-Hoyo, Pedro-Jose

TIME (UTC)		
	Speech 3:	The paper presents the results of studies related to
03:40 - 04:00		the possibility of cooperation of a LOFAR radio
Title	Field Trials of Passive	telescope with an external reference receiver in a
litte:	Radiolocation using LOFAR	radio telescono serves as a receiver. In particular
Room [.] B	Radio Telescope and External	the problem of synchronization of signal
	Reference Receiver	registrations performed by LOFAR and the external
	Konrad Jędrzejewski ¹ ©,	reference receivers based on Universal Software
	Krzysztof Kulpa ¹ ⁶ ,	Radio Peripheral (USRP) device is considered. The
	Mariusz Pożoga ² ©	field trials, whose results are presented in the
		paper, were one of the first stages of our research
Organization(s):	Warsaw University of	of space target detection using the LOFAR station
organization(3).	² Space Research Centre Polish	as a receiver in passive radiolocation system.
	Academy of Science (Poland)	
	, loadenig el colonice (l'elana)	
Sassion.	Dessive Dedar	
00331011.	Passive Radar	
00331011.		
04:00 04:20	Speech 4:	The receiver of the people's reder has a limited
04:00 - 04:20	Speech 4:	The receiver of the passive radar has a limited
04:00 – 04:20 Title:	Speech 4:	The receiver of the passive radar has a limited number of frequency channels that it can handle simultaneously. This number is usually smaller than
04:00 – 04:20 Title:	Speech 4: Performance Optimization for Passive Bistatic Radar Based	The receiver of the passive radar has a limited number of frequency channels that it can handle simultaneously. This number is usually smaller than the number of available illuminators of opportunity
04:00 – 04:20 Title: Room: B	Speech 4: Performance Optimization for Passive Bistatic Radar Based on Detection Range	The receiver of the passive radar has a limited number of frequency channels that it can handle simultaneously. This number is usually smaller than the number of available illuminators of opportunity that could be potentially used by the passive radar.
04:00 – 04:20 Title: Room: B	Speech 4: Performance Optimization for Passive Bistatic Radar Based on Detection Range Predictions	The receiver of the passive radar has a limited number of frequency channels that it can handle simultaneously. This number is usually smaller than the number of available illuminators of opportunity that could be potentially used by the passive radar. The problem is, therefore, how to select
04:00 – 04:20 Title: Room: B	Speech 4: Performance Optimization for Passive Bistatic Radar Based on Detection Range Predictions	The receiver of the passive radar has a limited number of frequency channels that it can handle simultaneously. This number is usually smaller than the number of available illuminators of opportunity that could be potentially used by the passive radar. The problem is, therefore, how to select transmitters so that optimum performance is abtained. The performance opposidered have in the
04:00 – 04:20 Title: Room: B	Speech 4: Performance Optimization for Passive Bistatic Radar Based on Detection Range Predictions <u>Marcin Żywek</u> , Mateuraz Meleneuraki	The receiver of the passive radar has a limited number of frequency channels that it can handle simultaneously. This number is usually smaller than the number of available illuminators of opportunity that could be potentially used by the passive radar. The problem is, therefore, how to select transmitters so that optimum performance is obtained. The performance considered here is the area where the target with a given value of RCS can
04:00 – 04:20 Title: Room: B	Speech 4: Performance Optimization for Passive Bistatic Radar Based on Detection Range Predictions <u>Marcin Żywek</u> [®] , Mateusz Malanowski [®]	The receiver of the passive radar has a limited number of frequency channels that it can handle simultaneously. This number is usually smaller than the number of available illuminators of opportunity that could be potentially used by the passive radar. The problem is, therefore, how to select transmitters so that optimum performance is obtained. The performance considered here is the area where the target with a given value of RCS can be detected by the passive radar with at least 3 Tx-
04:00 – 04:20 Title: Room: B Organization(s):	Speech 4: Performance Optimization for Passive Bistatic Radar Based on Detection Range Predictions <u>Marcin Żywek</u> [®] , Mateusz Malanowski [®] Warsaw University of Technology	The receiver of the passive radar has a limited number of frequency channels that it can handle simultaneously. This number is usually smaller than the number of available illuminators of opportunity that could be potentially used by the passive radar. The problem is, therefore, how to select transmitters so that optimum performance is obtained. The performance considered here is the area where the target with a given value of RCS can be detected by the passive radar with at least 3 Tx- Rx pairs. In the paper we consider two algorithms
04:00 – 04:20 Title: Room: B Organization(s):	Speech 4: Performance Optimization for Passive Bistatic Radar Based on Detection Range Predictions <u>Marcin Żywek</u> , Mateusz Malanowski Warsaw University of Technology (Poland)	The receiver of the passive radar has a limited number of frequency channels that it can handle simultaneously. This number is usually smaller than the number of available illuminators of opportunity that could be potentially used by the passive radar. The problem is, therefore, how to select transmitters so that optimum performance is obtained. The performance considered here is the area where the target with a given value of RCS can be detected by the passive radar with at least 3 Tx- Rx pairs. In the paper we consider two algorithms for optimal selection of the illuminators of
04:00 – 04:20 Title: Room: B Organization(s):	Speech 4: Performance Optimization for Passive Bistatic Radar Based on Detection Range Predictions <u>Marcin Żywek</u> , Mateusz Malanowski <i>Warsaw University of Technology</i> <i>(Poland)</i>	The receiver of the passive radar has a limited number of frequency channels that it can handle simultaneously. This number is usually smaller than the number of available illuminators of opportunity that could be potentially used by the passive radar. The problem is, therefore, how to select transmitters so that optimum performance is obtained. The performance considered here is the area where the target with a given value of RCS can be detected by the passive radar with at least 3 Tx- Rx pairs. In the paper we consider two algorithms for optimal selection of the illuminators of opportunity based on predicted detection range.
04:00 – 04:20 Title: Room: B Organization(s): Session:	Speech 4: Performance Optimization for Passive Bistatic Radar Based on Detection Range Predictions <u>Marcin Żywek</u> , Mateusz Malanowski <i>Warsaw University of Technology</i> <i>(Poland)</i> Passive Radar	The receiver of the passive radar has a limited number of frequency channels that it can handle simultaneously. This number is usually smaller than the number of available illuminators of opportunity that could be potentially used by the passive radar. The problem is, therefore, how to select transmitters so that optimum performance is obtained. The performance considered here is the area where the target with a given value of RCS can be detected by the passive radar with at least 3 Tx- Rx pairs. In the paper we consider two algorithms for optimal selection of the illuminators of opportunity based on predicted detection range.

Session Passive Radar Thursday 23.09.2021

Chair: Dr. Mateusz Malanowski & Prof. Gomez-del-Hoyo, Pedro-Jose

TIME (UTC)		
04-20 - 04-40	Speech 5:	Broadcast DAB transmitters can be considered as
04.20 - 04.40	Signal conditioning for DAB-	Location (PCL) due to their broadband nature. In
Title:	illuminated passive radar	this paper, we deal with the processing of the PCL
Room: B	Gustaw Mazurek	measurement campaign APART-GAS 2019 (Active Passive Radar Trials Ground-based, Airborne, Sea- borne) in Poland, September 2019. Due to the time-domain structure of DAB signal, there are artifacts clearly visible in bistatic velocity/range that repeat on a regular basis and distort images with detection results. In this paper,
Organization(s):	Warsaw University of Technology (Poland)	we will present a method of signal preprocessing in the time domain designed to eliminate the mentioned artifacts. This will allow us to obtain clearer images with detected objects, and to increase the integration time to detect weak echoes without a penalty of more intensive artifacts. We will also investigate the impact of increasing the integration time to the operating range of the experimental PCL system in case of detection of
Session:	Passive Radar	accidentally flying cruise airplanes. Finally, we will discuss a tradeoff between the increased processing gain and range-cell migration effect for the considered system.

Reviewers:

Karol Abratkiewicz Yuliya Averyanova Chris Baker Marcin Kamil Baczyk Fabrizio Berizzi **Philippe Brouard** Szymon Buś Amerigo Capria Simona Caraiman Alberto Carini Aleksandr Cariow Mikhail Cherniakov Zbigniew Czekała Andreas Deistung Marek Domański Jędrzej Drozdowicz Gaspare Galati Selenia Ghio Elisa Giusti Maria Sabrina Greco Artur Gromek Damian Gromek Braham Himed Maria Pilar Jarabo Amores Konrad Jędrzejewski Hristo Kabakchiev Piotr Kaniewski Adam Kawalec Jan M. Kelner Artur Klepaczko Benjamin Knödler

Warsaw University of Technology, Poland National Aviation University, Ukraine University of Birmingham, United Kingdom Warsaw University of technology, Poland University of Pisa, Italy ONERA - The French Aerospace Lab, France Politechnika Warszawska, Poland CNIT, Italy Technical University of Iasi, Romania University of Trieste, Italy West Pomeranian University of Technology Szczecin, Poland University of Birmingham, United Kingdom PIT-RADWAR S.A., Poland University Hospital Halle (Saale), Germany Poznań University of Technology, Poland Warsaw University of Technology, Poland Dep. of Electronic Engineering- Tor Vergata Univarsity, Italy RaSS-CNIT, Italy CNIT, Italy University of Pisa, Italy Warsaw University of Technology, Poland Warsaw University of Technology, Poland US Air Force Research Laboratory, United States of America University of Alcalá, Spain Warsaw University of Technology, Poland Sofia University "St. Kliment Ohridski", Bulgaria Military University of Technology, Poland Military University of Technology, Poland Military University of Technology, Poland Lodz University of Technology, Poland Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE, Germany

Reviewers:

Peter Knott

Krzysztof Kulpa Mikołaj Leszczuk Alberto Lupidi Steffen Lutz Mateusz Malanowski **Paulo Marques** Marco Martorella Łukasz Maślikowski Andrzej Materka Bogdan Matuszewski Gustaw Mazurek Jacek Misiurewicz Lorenzo Monte **Charles Mott** Katarzyna Osińska-Skotak Thomas Ott Mateusz Pasternak Jerzy Pietrasiński Tomasz Pięciak **Iole Pisciottano** Renata Maria Plucińska Anton Popov Jürgen Reichenbach Marek Wojciech Rupniewski Piotr Samczyński Rustem Sinitsyn Andrzej Skalski **Christian Steffes**

Paweł Strumiłło

Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR, Germany Warsaw University of Technology, Poland AGH University of Science and Technology, Poland CNIT, Italy HENSOLDT, Germany Warsaw University of Technology, Poland ISEL – Instituto de Telecomunicacoes de Lisboa, Portugal University of Pisa, Italy Warsaw University of Technology, Poland Lodz University of Technology, Poland University of Central Lancashire, United Kingdom Warsaw University of Technology, Poland Warsaw University of Technology, Poland Telephonics, United States of America Home, United States of America Warsaw University of Technology, Poland HENSOLDT, Germany Military University of Technology, Poland Military University of Technology, Poland University of Valladolid, Valladolid, Spain, Spain Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR, Germany Warsaw University of Technology, Poland Igor Sikorsky Kyiv Polytechnic Institute, Ukraine Jena University Hospital, Germany Warsaw University of Technology, Poland Warsaw University of Technology, WEiTI, ISE, Poland National Aviation University, Ukraine AGH University of Science and Technology, Poland Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE, Germany

Lodz University of Technology, Poland

Reviewers:

Lodz University of Technology, Poland
Wroclaw University of Science and Technology, Poland
AGH University of Science and Technology, Poland
Bialystok University of Technology, Poland
Bialystok University of Technology, Poland
Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR, Germany
Fraunhofer FHR, Germany
Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR, Germany
Temple University, United States of America
AGH University of Science and Technology, Poland
Warsaw University of Technology, Poland

Signal	
Processing	Symposium 🎔

SPSympo-2023

To the next Signal Processing Symposium we would like to invite you to Wrocław in September 2023.

On the 20th anniversary of the first SPS conference (in 2003) the jubilee SPSympo 2023 will be held in the convivial setting of Wrocław University of Science and Technology.

Lodz University of Technology Institute of Electronics

وللللك

đ